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Abstract—In this work we implement motion planning and
control of a robot arm with nonlinear model predictive control
using the optimization algorithm PANOC. PANOC is a first
order nonlinear optimization solver, with convergence guaran-
tees, that is matrix-free unlike the popular sequential quadratic
programming and nonlinear interior-point methods. We extend
this solver to deal with hard constraints using an augmented
Lagrangian method. This is used to implement a multiple-
shooting MPC algorithm with collision avoidance capabilities on
a robot arm. The computational time is benchmarked against
other nonlinear optimization solvers. The algorithm is validated
with simulations.

I. INTRODUCTION
A. Background

Motion planning with obstacle avoidance for a robot
manipulator is an important problem. It has applications in
several cluttered environments where a robot needs to reach
a goal position, such as an automatic warehouse, factory
assembly shop or even a personal home chore robot. With
humans increasingly sharing the workspace of the robot and
considering the imperfections of the perception algorithms,
it is vital that our motion planning and control algorithm is
highly reactive to changes in the environment.

Manipulator motion planning with obstacle avoidance has
been an active area of research and there are several paradigms
for approaching this problem. Some early approaches included
using an artificial potential field to repel the manipulator from
the obstacle while attracting it towards the goal region at
the same time [1]. Such methods are prone to get stuck in
a local minima easily and follow very slow motions near
the obstacles. Sampling based graph search methods such as
Rapidly-exploring Random Trees (RRT) and Probabilisitic
RoadMaps (PRM) [2], [3] provide probabilistic completeness
guarantees, that is, the probability of finding a successful
motion plan (provided that one exists) increases with the
search time and approaches 1. Karaman and Frazzoli [4] also
demonstrate that such planners are asymptotically optimal
for a class of methods. But these methods suffer from the
drawback of requiring an extra smoothing step to compute the
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trajectory before executing it. Optimization-based methods
[5], [6] avoid this problem by directly computing a locally
optimal, smooth path in the joint space. These methods are
also faster than the sampling-based methods, but do not
possess any completeness guarantees and might fail to find a
solution, even if one exists, if the solver is stuck in a region
of local infeasibility.

The potential field methods are fast and reactive but are
suboptimal while the sampling and optimization-based meth-
ods are optimal but are not fast enough to react to changes
in the environment in real-time as it requires replanning.
Moreover both the sampling-based and the optimization-based
motion planners compute only a joint path and therefore
require a separate joint path following controller. Model
Predictive Control (MPC) is a powerful strategy to address
the aforementioned drawbacks. With MPC, we combine the
task of motion planning and path following and we also
obtain the reactivity because of the feedback given to the
MPC controller.

The optimal control problem for robot manipulator trajec-
tory generation requires the solution of a nonlinear program
(NLP). Two of the standard methods for solving the NLPs are
Interior-Point (IP) [7] methods and the Sequential Quadratic
Programming methods (SQP) [8]. But these methods invoke
a QP solver for each iteration which requires generating and
solving a linear system of the KKT matrix. In this work,
we employ a recently proposed first order solver proximal
averaged Newton-type method for optimal control (PANOC)
[9] to solve the problem. PANOC is a matrix-free method
for non-convex problems that only requires vector-vector
operations, that is shown to exhibit fast convergence [10],
[11].

B. Contributions

The NLP formulation for robot motion control using MPC
imposes constraints and costs (such as tracking error) on the
end effector frame of the robot. This involves constraints and
penalties of the robot kinematics which is a highly nonlinear
function for a seven degree-of-freedom (dof) robot. In a
single-shooting approach, such penalties at an instant are
nonlinear functions of all the preceding input actions. This
leads to a problem that is, too ill-conditioned to robustly
achieve a feasible solution. While, in a multiple-shooting
approach, constraints and penalties on the end-effector frame
are a function of only the joint state at that instant and is not
directly a function of the control actions. This decoupling



leads to an optimization problem that is better conditioned
and therefore, a multiple-shooting approach is preferred.

These multiple-shooting constraints must be satisfied to
high accuracy for a computed trajectory to be meaningful. But
vanilla PANOC algorithm can only deal with hard constraints
that lead to feasible sets that permit an efficient projection op-
eration. In this work, we implement an augmented Lagrangian
method on top of the vanilla PANOC algorithm to enforce
both equality constraints and inequality constraints. This
method is also used to enforce obstacle avoidance constraints.

The method is shown to be fast by benchmarking it against
other solvers. The reactivity of the solver is studied on a
case where the obstacle is moving and the robot needs to
reactively avoid the obstacle.

II. NMPC FOR POINT-TO-POINT TRAJECTORY
GENERATION

A. Problem Statement

Let g € R" denote the joint angles, where n refers to the
number of degrees-of-freedom (DOF) of the robotic arm. Let
Trg refer to the End-Effector (EE) frame of the manipulator
with respect to the inertial frame. The relationship between
Tge and the joint angles g is generally a nonlinear function
and is denoted as follows:

Tk = fiin(q) (D

Let ¢ refer to the joint velocities. Let the state of the control
system denoted by x be defined as x = [¢,¢]”. Assuming an
acceleration-resolved robot controller, let the control action
u = ¢. The dynamical system is a double-integrator system
and is given as follows:
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This continuous-state system is discretized, assuming a
piecewise constant control action, to obtain the discrete-time
system with a sampling time of #;. expressed as follows:
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The controller aims to compute a trajectory that takes the
robot manipulator from a starting pose go to a desired end-
effector frame Tyoq1. The trajectory must prevent collision of
the manipulator with obstacles that are denoted as Oy; C R3
for the jth obstacle at kth instant. These objects are described
by open sets (possibly non-convex):
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The geometry of the manipulator is modelled as a union
of convex objects and described as:

0% (x;) C R3 (5)

The distance between the manipulator object and environ-
mental obstacle is defined as:

dist(0, 05 (i) = min(||p — ql|*, p € O, q € OF° (%))

(6)

The states x; and the control actions u; also have a feasible
set denoted as:

X € Xy ur €U )

where X; and U, are assumed to be closed compact
and convex sets projecting onto which, is computationally
inexpensive, such as box, balls or hyperplanes. In this work,
Xy and Uy refer to the box-constraints corresponding to joint
position and velocity limits and the joint acceleration limits
respectively.

B. Nonlinear model predictive control

The nonlinear model predictive control for the trajectory
planning problem can be formulated in the following form

minimize €N(x1v) —|—NZI Zk(xk, uk), (8a)
k=0

subject to X0 = Xgart,  fiin(qn) = Tooal (8b)
X1 = S, ue), k € Njg y_y), (8¢)
uy € Up, k € ]N[O,Nfl]v (8d)
Xk € Xi, k € Ny, (8e)
dist(03", O (x¢)) > 0,
ke Njon-1]:0 € N1n)sJ € Ny (8f)

Here ¢ (xy,uy) : R™*"™ — R refers to the stage costs that
is taken to be reference tracking error. The reference tracking
error is described as a quadratic error on the translation and
the orientation terms and also a quadratic penalty on the
control calculated as follows:

O (o, ) = [lux — tgoal |7, + [l P _pg°a1||2QP°5=k+
. 2
||dlag(C]{Cgoal) - 1||Qrol.k ®)

where p; refers to the translational terms and C; refers
to the rotation matrix or the direction cosine matrix in
homogeneous transformation matrix for the EE at the kth

instant, Tx(xx) = fxin(qx)-
C. PANOC Algorithm

The main features of PANOC algorithm [9] is summarized
here. Let o(z) : R — R be a function that is Cil’l. Let Z
denote the feasibility set of z. One can define a projected
gradient step as:

T =T,(zY — YVo(z") (10

where IT denotes a projection operation to the feasible set Z
and (I0) always leads to a decrease in cost function if y < Li[
Reaching the accumulation point of (T0) can be equivalently
viewed as fixed-point iteration. A series of iterates zV,z" !, ...
and so on are used to implement a quasi-Newton method



like the limited-memory BFGS (L-BFGS) method [12]. The
L-BFGS method exploits the curvature information of the
fixed point residual to speed up convergence. Globalization
is achieved by using Forward-Backward Envelope (FBE) as
a merit function [13], [14]. This FBE is real-valued and
continuous and is proved to have the same minima as the
original problem (T0). For each descent step in PANOC, a
linesearch is performed to find a convex combination of the
quasi-Newton step and the projected-gradient step that ensures
a decrease in the FBE thus providing PANOC with global
convergence properties. Since L; is, in general, not known in
advance for a given function, an initial value L? is chosen
for the Lipschitz constant and backtracking is performed to
increase the value of L; whenever the assumed value of the
constant is found to be too small in a local region.
Therefore, PANOC is a first-order matrix-free solver for
nonconvex optimization problems with favourable conver-
gence properties. It can easily deal with hard constraints that
have a feasibility set that permits a computationally simple
projection operation. If not, one can resort to relaxation of
the hard constraint to a soft constraint and use the penalty
method when accurate constraint satisfaction is not a key
requirement (such as the case of obstacle avoidance where
the obstacles are enlarged to provide a tolerance against the
constraint violation that is inevitable with the penalty method

[10D).

D. Augmented Lagrangian Formulation

In [10] and [11], where PANOC was used for the motion
planning of a cart-and-trailer system and a quadcopter
respectively, the dynamics constraints of the form in (8c)
were enforced using single-shooting. For the current problem,
which consists of penalty terms that are highly nonlinear
functions of the joint states, a single-shooting formulation
was found to be unsuitable. The ill-conditioning of the
formulation slowed down convergence and was even prone
to get trapped in local infeasibilities thus failing to find a
trajectory to the goal position.

For a multiple shooting formulation, the system dynamics
in is treated as constraints of the nonlinear program
(NLP). Using PANOC algorithm, such hard constraints are
typically solved using the quadratic penalty method [8].
In the quadratic penalty method, the sum of square of the
constraint violation is multiplied by a factor and added to the
original cost function. This factor is increased sequentially in
an outer iteration step to satisfies the constraints more closely.
It is important for the multiple shooting constraints to be
satisfied accurately. This calls for a high factor in the penalty
method, which can however cause ill-conditioning and
convergence issues. With the Augmented Lagrangian method
(ALM) [15] , we try to satisfy constraints more accurately
without increasing the factor to a very high value. In an
ALM method, the quadratic penalty term is added to the
Lagragian, thus “augmenting” it. Let x=[x; x» ... xy]
and u= [ur wuy .. uy_i| Let us define the equality
constraints as the residual from [8b| and as h(x,u) and

the inequality constraints from equations (8f) as g(x,u). Let
the total total objective function from be defined as:

N—1

Q(x,u) = EN(xN) + Z Ek(xk,uk)
k=0

(1)

The augmented Lagrangian formulation for this problem,
following the notation from [15], is defined as:

1
LA ere2) = Qo+ AT h(x,u) + el |hxw)| P+
1
ul g™ (ot u) + Seallg™ (o, pt,u)| P
(12)
where g™ (x, t,u) = max{g(x,u), *é#}- The algorithm for

minimizing the augmented Lagrangian is shown below in
Algorithm [1]

Algorithm 1 Augmented Lagrangian algorithm for prob-
lem (12)

Require: xo, up, Ao, Ho,
max_outer_iter, con_tol,
1: for v=0,1... max_outer_iter do
2:  Minimize .Z(xy,uy, Ay, ly,c1,,¢2,) in variables u and
x with PANOC until max_inner_iter to obtain u,; and

Cly» €2y, Max_inneriter,

Xv+1

30 if max(||h(xy1,uy11)]|eos [[€(Xv41, Uy41) ) < con_tol
then

4 STOP and return xy, uy, Ay, Uy

50 else if max([[A(xyr1,uy41) oo, I8 (ovt1s uy11)[|e0) <
0.75max(||A(xy,uy) ||w, || g(xv, uy)]|) then

6: Ayt = Ay + e, h(xyg,uyg1)

T Bvi1 = My +c2,8" (Xy41,ty11, ly)

8: €2, =C2y5 Cl,, =C1y

9: else

10: oy = 2C2v, Clyy ZZClv

11 Uyl =My, Ayvp1=2Ay

12: return Xxy.1,uy+1, Hy+1, Ay

ITII. SIMULATIONS

The controller is validated on a KUKA LBR robot
manipulator with 7 DOF shown in the Figure [T} The goal
position for the EE is shown as a green cuboid under the
robot end-effector. The obstacle to be avoided is modelled as
a black coloured ball. The MPC algorithm that is explained
in the section [[] is executed for this task. MPC sampling
time is taken to be 0.2 seconds with a horizon of 20 steps,
thus providing a prediction horizon of 4 seconds. The MPC
controller itself is however run at a rate of 50Hz. The joint
states are read (velocities are computed) from the robot once
every 20 ms and is taken as the starting point for the MPC
solver which recomputes the control action every 20ms. The
MPC output is then applied to the simulated robot model
to obtain the joint states and the velocity after 20 ms. To
this value a Gaussian noise with standard deviation of 10™*



Fig. 1: The KUKA iiwa robot on which simulations are
performed

is added before being fed back to the MPC controller to
simulate the real world noise and disturbances.

PANOC with ALM is benchmarked against two other
algorithms: ITPOPT [7], which is an interior-point solver
and WORHP [16] which is an SQP solver. PANOC with
ALM is allowed a maximum of 3 outer ALM iterations
and 30 inner PANOC iterations. Optimization engine (OpEn)
implementation of PANOC is used in this work. Interior-
Point solver is called with the option of L-BFGS hessian
approximation because it was found to be faster than the
default BFGS approximation. A buffer size of 10 is used for
the L-BFGS memory of both the PANOC and IPOPT solvers.
WORHP was used with a full hessian computation. The
maximum SQP iterations of WORHP is limited is the spirit
of the real-time iteration scheme [17]. All the simulations
were done on a system with Intel i7-8850H CPU @ 2.60GHz
X 12 running an Ubuntu 16.04 operating system.

A. Stationary Obstacle

In this case the robot plans and executes a trajectory from
the starting position shown in the Figure [I] to the green
cuboid. The computation times required for different solvers
is shown in the Figure 2a One can see that PANOC is
orders of magnitude faster than both WORHP and IPOPT
solvers. Unlike PANOC or WORHP, the maximum number
of iterations of IPOPT is not restricted, but is instead solved
till it converged to a tolerance of 1073. This is because,
IPOPT being a barrier method, is not suitable for real-time
iteration. The maximum number of iterations in WORHP per
MPC step was restricted to 6 because it was found that the
WORHP solver needed atleast 6 SQP iterations to reach the
goal location within the allocated time. WORHP was found
to be as slow as IPOPT mainly because WORHP computed
a full hessian which alone took about half of the total time
taken by WORHP. Hence the time taken by WORHP can be
reduced by almost half through appropriate code-generation
methods for computing the Hessian so that solving the KKT
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(b) Maximum constraint violation of the multiple-shooting con-
straints in stationary obstacle case
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Fig. 2: Computation time and primal feasibility residuals for
the motion planning for the stationary case

system becomes the bottle-neck, but it would still be an order
of magnitude slower than PANOC. The mean, maximum and
the standard deviations of the computation times can be seen
in the table [[lIZAl PANOC has a mean time of 4.98 ms with
a standard deviation of 1 ms. Even the maximum time taken
by PANOC is 9.27 ms and does not exceed 20 ms. Therefore,
it is highly suitable for deployment on a robot with an MPC
controller rate of 50 Hz. the other two solvers take over a
100 ms for each MPC computation and are hence not suitable
for deployment on a real robot.

Figure [2b] shows the maximum residual of the equality
constraints for the three solvers. It is is very important for
this residual to be low for the multiple-shooting constraints
to lead to a meaningful trajectory. PANOC with ALM
understandably performs the worst in this regard because
it does not provide superlinear convergence to the optimal
primal-dual point. But the important thing to note is that the
constraint satisfaction is still sufficiently satisfied for robot
MPC purposes with the violation being around 1073, While
IPOPT consistently computes trajectories that closely satisfy
the equality constraints, the performance of WORHP solver is
more inconsistent in this regard and is sometimes worse than
PANOC as well. This is likely due to 6 SQP iterations not
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Fig. 3: Visualization of obstacle avoidance

being sufficient to satisfy the constraints to a low tolerance all
the time. Figure [2c| compares the obstacle penetration of the
robot motion from the three solvers. All the solvers achieve
obstacle avoidance except for PANOC at a particular instance,
but the violation is still a small value of 3mm and did not
result in collision because the robot geometry is modelled
slightly conservatively.

y solvers | PANOC | TPOPT | WORHP |
Mean time 498 ms | 226.6 ms | 189.7 ms
Standard deviation 1 ms 84.5 ms 64.8 ms
Max time 9.27 ms 800 ms 477 ms

B. Moving Obstacle

In this section we simulate a scenario where the obstacle is
moving and actuate robot with MPC control actions from the
different solvers. The ball is given a small velocity such that it
moves in the upward direction. We can see the initial position
of the robot and the obstacle in the figure [3a} In the figure [3b|
we see the robot crossing over the moving obstacle to reach
the goal position in If the collision avoidance constraints
are not added, the final goal position, that is reached is shown
in the figure [3d| which we can clearly see is a configuration
in collision. In the figures [#a] and are plotted the joint
position and joint velocity values computed by MPC using
PANOC with ALM. The smoothness of the control action
despite the multiple shooting constraints not being satisfied
to a very low tolerance is worthy of being noted.

We do not form a motion model of the obstacle. Forming

Joint positions computed by the MPC

Joint Positions (rad)

Time(s)

(a) The joint position values of the trajectory followed by the robot

Joint velocities computed by the MPC
T T T T
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(b) The joint velocity values for the trajectory computed by the
MPC

Fig. 4: Computed trajectories during obstacle avoidance

such a motion model in many cases is not feasible, for
example when humans and robots share the workspace, it
is not always possible to predict the motion of humans.
Instead we record and send the instantaneous position of
the obstacle to the MPC solver, thus forcing the MPC solver
to react to newly received obstacle position each time. We
hypothesize that PANOC-ALM would be more reactive to
the changing robot position and achieve better constraint
satisfaction because it takes more inner iteration steps than
an SQP method. This is indeed what is observed in [5al One
can see that PANOC regularly satisfies the equality constraints
better than the WORHP solver. In fact for this example, it
was found that robot simulated with control actions from
WORHP MPC failed to reach the goal state within 7 seconds
when the maximum allowed SQP iterations are 6. [IPOPT
still accurately satisfies the constraints because the number
of iterations are not limited for this solver.

The computation times taken by the different solvers remain

very similar as can be seen in [5b} This is reasonable because
computationally, the problem remains the same. However
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Fig. 5: Computation time and primal feasibility residuals for
the motion planning in the moving obstacle case

computation time of WORHP solver towards the end of the
trajectory is worse compared to the stationary obstacle case
because WORHP has not reached the goal pose yet which
would have prevented WORHP from computing all 6 SQP
iterations.

IV. CONCLUSIONS AND FUTURE WORK

PANOC with ALM is demonstrated to be orders of
magnitude faster than IPOPT and WORHP. But the constraint
satisfaction of the multiple shooting and other initial and
terminal constraints is worse when the MPC is solved using
PANOC. However, it was found to be still accurate enough to
result in smooth trajectories that successfully reach the goal,
when the robot is simulated with the joint acceleration inputs
from the MPC. The PANOC solver was found to always
compute the input action within 10 ms and is thus suitable
to be used for an MPC controller that runs at 50 Hz.

However, with multiple shooting formulation, the obstacle
avoidance constraints are enforced only at discrete points
providing no guarantee of constraint satisfaction between
these points. In future work we aim to address this problem
by computing the swept volume of the robot to avoid the
obstacles and also extend the obstacle shape to other convex
primitives following the treatment in [5]. We also aim to
extend the solver to deal with L1 norm of the distance error
in order to obtain more time-optimal trajectories.
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