
Efficient Constrained Dynamics Algorithms based
on an Equivalent LQR Formulation using Gauss’

Principle of Least Constraint
Ajay Suresha Sathya1,2,5, Herman Bruyninckx1,3, Wilm Decré1,2 and Goele Pipeleers1,4

Abstract—We derive a family of efficient constrained dynamics
algorithms by formulating an equivalent linear quadratic regu-
lator (LQR) problem using Gauss’ principle of least constraint
and solving it using dynamic programming. Our approach builds
upon the pioneering (but largely unknown) O(n + m2d + m3)
solver by Popov and Vereshchagin (PV), where n, m and d are
the number of joints, number of constraints and the kinematic
tree depth respectively. We provide an expository derivation for
the original PV solver and extend it to floating-base kinematic
trees with constraints allowed on any link. We make new
connections between the LQR’s dual Hessian and the inverse
operational space inertia matrix (OSIM), permitting efficient
OSIM computation, which we further accelerate using matrix
inversion lemma. By generalizing the elimination ordering and
accounting for MUJOCO-type soft constraints, we derive two
original O(n + m) complexity solvers. Our numerical results
indicate that significant simulation speed-up can be achieved
for high dimensional robots like quadrupeds and humanoids
using our algorithms as they scale better than the widely used
O(nd2 + m2d + d2m) LTL algorithm of Featherstone. The
derivation through the LQR-constrained dynamics connection
can make our algorithm accessible to a wider audience and enable
cross-fertilization of software and research results between the
fields.

Index Terms—Dynamics; Direct/Inverse Dynamics Formula-
tion; Optimization and Optimal Control; Redundant Robots

I. INTRODUCTION

R IGID body mechanics is a long-studied field with fun-
damental contributions already made in the 18th and

19th centuries. Since the 1970s, robotics research has focussed
on developing computationally efficient dynamics algorithms
[1]. Initial motivation for this research was to enable real-
time dynamic simulation and computed torque control on the
slow computers of the 1970s. Despite significant processor
clock-time improvements since then, computing dynamics
efficiently remains a relevant problem because it can posi-
tively impact modern robotics applications involving model
predictive control (MPC) and reinforcement learning. Faster
computation enables MPC control designers to increase the

*The authors gratefully acknowledge support from Flanders Make through
the Flanders Make SBO project - MULTIROB and from the Research
Foundation Flanders (FWO) through the project G0D1119N. Flanders Make
is the Flemish strategic research centre for the manufacturing industry.

1The authors are with the Division of Robotics, Automation and
Mechatronics in the Department of Mechanical Engineering, KU Leu-
ven, Leuven, Belgium, 2 DMMS-M Lab, Flanders Make, Leuven, Bel-
gium, 3 TU Eindhoven, Netherlands, 4 Materialise NV, Leuven, Bel-
gium. 5 Corresponding author. Contact:ajay.sathya@kuleuven.be,
herman.bruyninckx@kuleuven.be, wilm.decre@kuleuven.be,
goele.pipeleers@kuleuven.be

(a) Environment imposes con-
straints on a robot which must be
accounted for in dynamics equa-
tions.

Inertia, forces,

Inverse OSIM

Base link (�xed/�oating)

Positions, velocities Accelerations

fext

Constraint

joint torque

(b) Three sweep structure of
the PV solver: paralleling for-
ward simulation, backward DP
recursion and rollout.

Fig. 1: Structure-exploiting constrained dynamics algorithm.

prediction horizon which usually improves optimality and
stability properties of the MPC controller [2]. It can speed
up contact-aware online trajectory optimization [3], [4] and
also shorten long training times in reinforcement learning from
simulations. Unsurprisingly, implementing efficient dynamics
simulators remains an active research area [5]–[9].

A. Related work

However, efficient dynamics algorithms are typically com-
plex with “a steep learning curve” [10] and are not discussed
in introductory robotics textbooks [11], [12]. Consequently,
robotics researchers often use dynamics algorithms, especially
constrained dynamics algorithms (with motion constraints like
the non-penetration for the Go1 robot’s feet in fig. 1a)),
implemented in simulators as a black-box and are therefore
unable to adapt or debug the algorithms to suit their applica-
tions. By deriving efficient constrained dynamics algorithms
(CDA) as the solution of an equivalent equality-constrained
linear quadratic regulator (LQR) problem, we believe that
this paper makes efficient CDAs accessible to researchers
with an optimization and control background. This includes
many roboticists that are MPC practitioners due to the rising
popularity of differential dynamic programming (DDP) style
[13] algorithms. The optimization-based perspective as well
as the LQR connection opens up possibilities for transfer
of software and recent research results between the fields,
especially the recent data-driven methods for safe control of
systems with uncertain dynamics [14]. Our derivation is also



self-contained and does not assume prior knowledge of LQR
derivation.

The first efficient recursive algorithms, with O(n) com-
plexity in the number of joints, for computing the uncon-
strained forward dynamics were independently discovered by
Vereshchagin [15] and Featherstone [16]. However, Vereshcha-
gin’s solver “was way ahead of its time and languished in ob-
scurity for a decade” [17]. Featherstone’s insight involved effi-
ciently propagating the solution of the Newton-Euler equations
through the links, while Vereshchagin’s approach was based
on optimizing the Gauss’ principle of least constraint (GPLC)
[18] using dynamic programming (DP) [19]. Vereshchagin’s
idea is analogous to the standard textbook approach for solving
the discrete-time linear quadratic regulator (LQR) problem
using DP [2, Chapter 1], which we will use in the rest
of this paper. Similar connection to the LQR problem was
independently made in [20] by noting similarities between the
Kalman filter and O(n) recursive dynamics algorithms and this
connection was further developed within a spatial operator
algebra (SOA) framework [21], [22], making efficient O(n)
dynamics algorithms accessible to researchers familiar with fil-
tering theory. However, the SOA derivation is fairly complex,
is performed over several papers and assumes strong famil-
iarity with filtering theory literature and notation from 1960s
and 1970s. Moreover, the SOA derivation does not permit
a straightforward extension to constrained dynamics. Unlike
SOA, our LQR approach starts with the optimization problem
arising from first principles, includes motion constraints and
readers will find our derivation to be a significantly simpler
and more direct connection to LQR than [20].

The simplicity arises from GPLC straightforwardly model-
ing motion constraints as constraints in the associated opti-
mization problem. This ease of modeling allowed Popov and
Vereshchagin (PV) to quickly extend their forward dynamics
algorithm to an efficient O(n) CDA [23], [24] for fixed-
base kinematic chains with end-effector constraints. But this
extension of the LQR connection to constrained dynamics re-
mains largely unknown and unused by the robotics community
despite its simplicity and efficiency. There have been a few
robot control architectures using the PV solver [25], [26],
including an implementation in OROCOS-KDL 1 for kinematic
chains, but its wider usage remains limited. [25] also derives
the PV solver by introducing the concept of “acceleration
energy” and extends it to trees by assembling acceleration
energies. For readers unfamiliar with acceleration energy, their
derivation is hard to follow and verify, while in this paper we
provide an expository derivation purely using the mathematical
perspective of the LQR problem.

Other independent contributions that can be used to solve
constrained dynamics includes the well-known operational-
space formulation [27]. However, [27] does not propose an
efficient algorithm for computing the operational-space iner-
tia matrix (OSIM), which has a computational complexity
of O(n3) when computed naively in joint-space. A major
contribution to computing OSIM efficiently came in the form
of an O(n + m2d + m3) complexity recursive algorithm in

1https://www.orocos.org/kdl.html

[28], [29], where m is the number of constraints and d is the
tree depth. An efficient formula for computing off-diagonal
blocks of the inverse OSIM using extended force propagators
(EFP) was proposed in [30]. However, they do not exploit
this EFP idea in their proposed algorithm and instead used a
recursive approach similar to [28] to obtain O(n+mn+m3)
complexity [30]. The idea of EFP was fully exploited in the
EFP algorithm (EFPA) [31] to obtain a reduced complexity of
O(n+md+m3). In [32], Featherstone reported that exploiting
the branching-induced sparsity in the joint-space inertia matrix
(JSIM) and the kinematic Jacobian to compute the OSIM more
efficiently than the existing recursive O(n) algorithms despite
having a worse O(nd2 + md2 + dm2) complexity (where d
is the depth of the tree) even for the Honda Asimo robot, a
complex robot with n = 40. This result has led to a much
wider usage of Featherstone’s higher complexity method in
simulators like MUJOCO, PINOCCHIO [6], Raisim and RBDL,
to name a few, compared to the lower complexity algorithms
like EFPA [31]. Recent work [6] derives Featherstone’s OSIM
algorithm [32] from the perspective of factorizing the contact
KKT matrix and utilizes proximal-point iterations to solve for
systems with redundant constraints.

Independent efforts to extend the efficient ABA algorithm
to internal kinematic closed loop constraints were realized
in [33], [34]. With the loop-closure constraint being a more
general constraint model than the simpler desired acceleration-
relative-to-ground constraint model considered in the PV
solver, these more general algorithms include the PV solver
computations as a subset of their computations. These algo-
rithms can be straightforwardly adapted to kinematic trees
with acceleration-relative-to-ground constraints to obtain an
algorithm virtually identical to the PV solver. The derivation
in [33] relies heavily on the physical insight of the readers,
while the derivation in [34] is relatively more formal by
algebraically solving the d’Alembert’s equations. [33] further
proposed a form of early constraint elimination that provides
an O(m + n) complexity algorithm for certain kinematic
mechanisms. Similar ideas were also used in [35] to obtain an
O(n+m) algorithm based on Kane’s equations [36]. However,
our PV solver derivation approach is different, and we will
discuss in detail the comparison with these algorithms in
section IX-E. Moreover, we are not aware of any open-source
implementation of [33], [34] or its computational comparison
with the popular Featherstone’s sparsity exploiting algorithms.

Another line of research for accelerating dynamics com-
putations includes the divide-and-conquer type of algorithms
that aim to exploit parallel computing [37]–[40] achieving an
O(log(n)) complexity using O(n) computational cores. These
algorithms compute constrained dynamics by placing handles
on the constrained bodies. The PV solver derived in section V
can also be interpreted as an algorithm that computes the
relative inertia of these handles. [41] presents a distributed
algorithm specifically for computing the OSIM. Comparison
of the PV solver with these parallel algorithms is further
discussed in section IX-E.

The efficient algorithms discussed so far have complex
derivations, a third simple approach pioneered in [10], involves
constructing the KKT matrix in ‘maximal’ coordinates and



solving it using a sparse linear solver. Despite having a
favorable O(n+md+m3) complexity, Barraf’s [10] algorithm,
does not exploit as much structure as possible (for example
it computes joint constraint forces which are avoided in
other methods) and requires joint constraint stabilization. It is
generally not considered to be competitive with the recursive
or sparse factorization methods mentioned above [1].

The PV solver derivation using the LQR connection has
the elegance and simplicity of Baraff’s derivation, with a
three-sweep structure that is analogous to forward simulation,
backward DP recursion and rollout in LQR control as shown in
fig. 1b. We also found it be more efficient than state-of-the-art
algorithms as we will show in the rest of this paper.

B. Contributions

1) Expository derivation of the original PV solver and
extensions: We provide an expository derivation of the original
PV solver by adapting the textbook approach for solving the
LQR problem [2], highlighting its connection to constrained
dynamics more clearly than in existing literature. We then
derive extensions to the original PV solver to support: 1)
floating-base robots 2) constraints potentially on any link, 3)
kinematic trees and show its computational complexity to be
O(n+m2d+m3).

2) Connections to the OSIM: We show that the dual Hes-
sian, that is computed as an intermediate step of the PV solver,
is equal to the inverse OSIM. This connection is new in liter-
ature, to the best of our knowledge, and provides an efficient
O(n + m2d + m2) algorithm, that is as of yet unexploited
to compute the inverse OSIM. This algorithm is structurally
different from the currently known O(n) family algorithms
KRJ [28] and EFPA [30], [31], by requiring only two sweeps
over the kinematic tree instead of three and is found to be more
efficient in practice for most robots of interest despite having a
worse complexity than the O(n+md+m2) EFP algorithm. We
further accelerate OSIM computation for floating-base robots
with branching structure at the base.

3) O(n + m) algorithms: Building upon our expository
PV solver treatment, we derive two efficient and new (to the
best of our knowledge) CDA with only O(n + m) compu-
tational complexity. The first algorithm solves the so-called
“soft Gauss principle” used in the popular robot dynamics
simulator MUJOCO [42] [7], that relaxes the hard motion
constraints with quadratic penalties. The second algorithm
solves the original problem with hard motion constraints,
by incorporating early elimination of Lagrange multipliers,
thereby limiting their backward propagation which provides
the improved computational complexity.

4) Benchmarking: Despite the PV solver and Brandl et
al.’s [33] contributions being over thirty-five years old, their
computational performance is untested against the state-of-the-
art algorithms, that are currently recognized to be fast in liter-
ature. We provide a comprehensive benchmarking of the PV
solver against Featherstone’s sparsity-exploiting algorithms
[32], [43] (currently used most widely in high-performance
robot simulators including the PINOCCHIO and MUJOCO
toolboxes), the lower-order EFPA [30], [31] algorithm as well

as our O(n+m) extensions to the PV solver. These numerical
results are new in literature to the best of our knowledge.

The source code of the solver is made available publicly 2.

C. Organization
We first discuss background material and preliminaries in

section II and derive the PV solver for a kinematic chain with
a fixed-base and motion constraints only on the end-effector
in section III. We then discuss the physical interpretation of
the terms of this relatively simple algorithm and also show the
equality of the dual Hessian of the constrained LQR problem
and the inverse OSIM in section IV. Later, we generalize the
derivation to the more complex case of floating-base robots
with a kinematic tree structure and constraints on any link in
section V. This separation of the PV solver derivation into two
sections was made for clarity of exposition as it is easier to first
follow the derivation for fixed-base kinematic chains before the
generalization to trees. We then present an efficient extension
of the PV solver to ‘soft’ motion constraints in section VI. We
expand upon the dual Hessian-OSIM connection in section VII
and finish our derivations with a fast O(n + m) algorithm
for the original problem with hard motion constraints in
section VIII. Section IX presents algorithm benchmarking and
discussions, and we make concluding remarks in section X.

II. BACKGROUND

A. Notation and Convention
Table I lists the notation used in this paper. Bold-faced lower

case letters or symbols are vectors and upper case letters or
symbols are matrices. AT is the transpose of a matrix A. In×n

and 0n×n are the identity matrix and zero matrix of dimension
n×n respectively. The := operator defines the left-side symbol
with the right-side expression. The ← operator assigns the
right-side expression to a left-side variable in an algorithm.

We use the popular Featherstone’s spatial algebra nota-
tion [1] throughout the paper. For a robot’s ith rigid body,
Xi ∈ SE(3), vi ∈ M6 and ai ∈ M6 denote the spatial
pose, velocity and acceleration respectively. SE(3) is the
special Euclidian group in 3 dimensions represented as a
6 × 6 spatial transformation matrix. fi ∈ F6 is the spatial
force acting on the i-th body. For notational simplicity of the
upcoming derivations, all motion/force vectors vi, ai and fi
are with respect to a common inertial frame. × and ×∗ are the
spatial cross-product operators for motion and force vectors
respectively.

The whole robot’s state is (qp, q̇), where qp ∈ Q is its
pose in the configuration space Q, q̇ ∈ TqpQ ≃ Rn is its
generalized velocity in Q’s tangent space at qp and n is the
robot’s degrees of freedom (d.o.f). Let τ ∈ T ∗

qp
Q ≃ Rn be the

generalized force acting on the robot in the dual tangent space
of Q and q̈ ∈ Rn be q̇’s time derivative. This Lie algebraic
notation allows a unified representation of floating-base robots
and multi d.o.f joints where a singularity-free representation
of position may require np ≥ n. For a fixed-base manipulator
with single d.o.f joints, qp = q, q̇, q̈ and τ are simply the joint
positions, velocities, accelerations and torques respectively.

2https://github.com/AjSat/spatial V2

https://github.com/AjSat/spatial_V2


TABLE I: Notation

Symbol Definition
{j}Xi Spatial pose of i-th link in j-th link’s frame.
vi 6D spatial velocity of the i-th link.
ai 6D spatial acceleration of the i-th link.
fi 6D spatial force acting on the i-th link.
qp Vector of robot joint positions.
q̇ Vector of robot joint velocities.
q̈ Vector of robot joint accelerations.
τ Vector of robot joint torques.
n Degrees of freedom of the robot.
Ki Acceleration constraint matrix on i-th link.
ki Desired constraint accelerations.
Ji Geometric Jacobian of the i-th link.
J̇i Time derivative of Ji.
J Joint-space constraint Jacobian.
J̇ Time derivative of J .
k Concatenation of all ki.
m Number of acceleration constraints on the robot.
M Joint-space inertia matrix.
c Joint torques due to bias accelerations, forces and gravity.
λ Lagrange multipliers of constraints.
Λ Operational-space inertia matrix.
L Lower triangular matrix in LTL decomposition [43].
Y Intermediate quantity in LTL-OSIM [43], see section II-C.
π(i) Index of i-th link’s parent link.
γ(i) Set of i-th link’s children links’ indices.
Si Motion subspace of the i-th joint.
Ti Force subspace of the i-th joint.
Hi 6× 6 spatial inertia tensor of the i-th link.
ab,i i-th link’s bias acceleration.
L The Lagrangian of the LQR problem.
Vi Cost-to-go Lagrangian at i-th link.
HA

i Articulated body inertia of i-th link.
LA
i Constraint’s coupling due i-th and its descendant joints.

KA
i Constraint force propagated to the i-th link.

fAi Resultant force on i-th link excluding constraint forces.
lAi Desired constraint accelerations propagated to the i-th link.
Di Apparent articulated body inertia along the i-th joint.
Pi Backward force propagator through the i-th joint.
fexti Resultant external wrench acting on the i-th link.
b Index of the floating-base link.
λA
i Concatenated multipliers on i-th and its descendant links.

r Number of branches from the floating-base link.

B. Preliminaries

We will now briefly summarize forward dynamics, inverse
dynamics and constrained dynamics problems. Forward dy-
namics computes q̈, that result from applying τ on a given
robot at state (qp, q̇), to simulate the robot state forward in
time. Conversely, inverse dynamics computes the τ required
to obtain a desired q̈ at state (qp, q̇). Constrained dynamics
is the forward dynamics problem with motion constraints in
addition to joint constraints and will be formalized in the next
paragraph. Inverse dynamics is, in general, easier to compute
than forward dynamics, which is in turn significantly easier to
compute than constrained dynamics.

Let the acceleration constraint on the i-th link be

Ki(qp)ai = ki(qp, q̇), (1)

with Ki ∈ Rmi×6, ki ∈ Rmi and mi the constraint dimen-
sionality. Without loss of generality, we scale the constraints
such that each row of Ki has unit norm. Both holonomic and
non-holonomic motion constraints can be converted to this

form by differentiation [11]. The acceleration constraints can
be transformed to the generalized coordinates using

ai = Ji(qp)q̈+ J̇i(qp, q̇)q̇, (2)

where Ji(qp) ∈ R6×n is ith link’s geometric Jacobian and
J̇i(qp, q̇) ∈ R6×n is its total time derivative. Substituting
eq. (2) in eq. (1) and stacking all the links’ constraints gives

J(qp)q̈+ J̇(qp, q̇)q̇ = k(qp, q̇), (3)

where J(qp) :=


K1(qp)J1(qp)

...
Ki(qp)Ji(qp)

...
Kn(qp)Jn(qp)

 ∈ Rm×n, J̇(qp, q̇) :=



K1J̇1 + K̇1J1
...

KiJ̇i + K̇iJi
...

KnJ̇n + K̇nJn

 ∈ Rm×n, k(qp, q̇) :=


k1

...
ki

...
kn

 ∈ Rm.

The constrained dynamics problem involves simultaneously
solving eq. (3) and the linear system

M(qp)q̈+ c(qp, q̇) + J(qp)
Tλ = τ , (4)

for unknowns q̈ and λ, where, M(qp) ∈ Rn×n, c(qp, q̇) ∈
Rn and λ ∈ Rm are the joint-space inertia matrix (JSIM),
generalized force due to Coriolis, centrifugal and gravity
effects and the Lagrange multipliers associated with the ac-
celeration constraint respectively. Solving for q̈ in eq. (4)
(which is always possible because M(qp) is positive definite)
and substituting in eq. (3) gives the operational-space form of
constrained dynamics [27] (with term dependencies dropped
for brevity from now on when it is clear from the context)

Λ−1λ = J̇ q̇− k+ JM−1(τ − c), (5)

with Λ(qp)
−1 :=

(
J(qp)(M(qp))

−1J(qp)
T
)
∈ Rm×m and

Λ(qp) is the OSIM. The inverse OSIM Λ(qp)
−1 captures the

inertial coupling between constraints, where the i-th column of
Λ(qp)

−1 is the acceleration along all the constraint directions
caused by λi = 1 (i-th constraint force with unit magnitude).

Remark 1 Since M(qp) is a positive definite matrix, if J has
full row-rank, Λ−1 has full rank, is invertible and Λ exists.
Then, eq. (5) permits a unique solution for λ.

Remark 2 J may not have full row-rank in over-constrained
systems, when constraints conflict with each other or due
to loss of Ji’s rank at kinematic singular configurations and
depending on the numerical values of k, there exists either no
solution or an infinite number of solutions for λ.

Typical strategies to address singular Λ−1 include Tikhonov
regularization, proximal-point iterations [6], Moore-Penrose
pseudo-inverse using the singular value decomposition (SVD),
relaxing the constraints with weighted quadratic penalties
[7] or employing prioritized conflict resolution [44]. Since a
discussion of these different strategies is not the focus here,
we assume that J has full row-rank in the rest of this paper.



C. Featherstone’s LTL algorithms

We now review Featherstone’s sparsity-exploiting algo-
rithms and introduce terms that will be benchmarked in sec-
tion IX. The LTL algorithm [43] is a Cholesky decomposition
for the JSIM

LTL = M, (6)

where L ∈ Rn×m is a lower triangular matrix. In contrast to
the traditional LLT Cholesky algorithm [45], the LTL method
ensures no fill-in (preserves the sparsity pattern of M in L)
even without resorting to pivoting methods that choose an
elimination ordering. The idea was extended in the LTL-OSIM
algorithm [32] to compute the OSIM for kinematic trees,
where the sparsity pattern of J is also exploited

Y = JL−1, (7)

where Y ∈ Rm×n also has the same sparsity pattern as J and

Λ−1 = Y Y T . (8)

D. Forward kinematics

Let a kinematic tree have n links indexed from 1 to n. The
world link (assumed to be a fixed inertial frame) is assigned
the 0 index. The i-th joint connects the i-th link to its parent
link π(i). The world link is tree’s root and does not have a
parent link. For floating-base robots, such as quadrupeds, a
chosen link b (usually the torso) is connected to the world
link through a free joint. γ(i) is the set of i-th link’s children.
A link j is a leaf link if γ(j) = ∅.

The spatial poses, velocities and accelerations of all links
in the tree can be computed recursively in a forward sweep
starting from the root (world link) using

Xj =
(
Xπ(j)

) ({π(j)}Xj′

)(
{j′}Xj

)
, (9)

vj = vπ(j) + Sjq̇j , (10)
aj = aπ(j) + Sjq̈j + vj × Sjq̇j , (11)

where {π(j)}Xj′ is the j-th link’s pose in its parent link’s frame
when the j-th joint is at its home pose (usually computed from
the robot URDF file or the DH parameters) and {j′}Xj is
the spatial transformation due to the j-th joint’s displacement.
Sj ∈ M6×nj is the j-th joint’s motion subspace, where nj is
the joint’s d.o.f (usually 1). Sjq̇j is the j-th joint’s contribution
to vi. Let Tj ∈ F6×nj be the j-th joint’s force subspace, such
that Tjτj is the joint’s contribution to fj .

Remark 3 The force subspace Tj is the dual of the motion
subspace Sj , hence ST

j Tj = Inj×nj
[1, eq. 3.39].

E. Gauss’ Principle

GPLC [18] is an optimization-based formulation of classical
mechanics, which is not as well known or widely used as the
Lagrangian formulation. Refer [46] for a detailed discussion
on GPLC, according to which, a constrained system under
the influence of forces undergoes accelerations that are as
close as possible (in a weighted least-squares sense) to the
unconstrained motion of the system under the same non-
constraint forces. For a system of rigid bodies with spatial

inertia tensor Hi ∈ R6×6 of the i-th link, under the external
forces fi, which includes the bias forces vi ×∗ Hivi, the
resulting accelerations ai are the minimizers of the following
optimization problem [47].

minimize
a1,...,an

n∑
i=1

1

2

(
ai −H−1

i fi
)T

Hi

(
ai −H−1

i fi
)
, (12a)

subject to motion constraints. (12b)

F. Dynamic Programming Principle

Dynamic programming (DP) [19] is a general theoretical
framework for optimizing a function through a series of
nested optimizations over the decision variables in some
order. DP’s efficiency can crucially depend on the variable
elimination order. Each DP step optimizes over a function to
return a function, so its computation is intractable, unless the
intermediate functions can be efficiently parameterized. The
discrete-time linear quadratic regulator (LQR) problem is one
such exception, where all the intermediate functions have the
quadratic form. Fortunately, for kinematic tree mechanisms,
the GPLC problem is algebraically identical to the discrete-
time LQR problem with scenario trees and can be solved
efficiently using DP. This robot dynamics-LQR connection
forms the basis of the derivations in this paper.

III. DERIVATION OF THE CONSTRAINED DYNAMICS
SOLVER

In this section we derive the PV solver for fixed-base
kinematic chains with end-effector motion constraints. We
first formulate the optimization problem in section III-A, then
derive its solution using DP in section III-B.

A. Problem formulation

Consider a kinematic chain with the links indexed such that
π(i) = i− 1, with 0-th link being the world link. The GPLC
optimization problem eq. (12) for this chain is

minimize
a1,...,an,q̈

n∑
i=1

1

2

(
ai −H−1

i fi
)T

Hi

(
ai −H−1

i fi
)
, (13a)

subject to ai = ai−1 + Siq̈i + ab,i, i = 1, 2, ..., n, (13b)
Knan = kn, a0 = −agrav, (13c)

where eq. (13b) implicitly encodes joint motion constraints
using eq. (11), ab,i := vi × Siq̇i is the bias acceleration,
eq. (13c) encodes the end-effector constraint (a common
pattern e.g. when the end-effector is wiping a table) and
the fixed-base constraint, and agrav is the acceleration-due-
to-gravity vector. The reason for setting a0 to −agrav will be
explained in section III-B2. The parameters in the problem
such as Hi, fi, ab,i and Si are computed using the inputs to
the problem, namely qp, q̇, τ and the robot model.

The problem in eq. (13) is algebraically identical to the
discrete-time LQR problem: the forward propagation of link
acceleration along the kinematic chain (see eq. (13b)) is
analogous to the LQR’s forward state propagation in time,



with ai and q̈i corresponding to the LQR’s states and controls
respectively.

Remark 4 Either ais or q̈ can be considered the free variables
in eq. (13) as one can be computed from the other using
eq. (13b) because Si always has full rank [34].

Remark 5 The inertia tensor Hi is symmetric positive def-
inite for all links, therefore eq. (13) is a strongly convex
quadratic program (QP) with a unique solution, when feasible.

Conflicting constraints or unachievable desired accelerations
at configuration qp can make the QP infeasible.

B. Dynamic programming solution

We now solve the optimization problem in eq. (13) using
DP by following the textbook LQR derivation [2, Chapter 1].
The recurrence relation constraints in eq. (13b) and the a0 =
−agrav constraint will be eliminated via substitution. However,
unlike the textbook version, eq. (13) has a hard ‘terminal’
constraint (due to the end-effector constraint) which cannot be
similarly eliminated via substitution. Therefore, we adapt the
textbook derivation to instead solve for the primal-dual saddle
point of QP’s Lagrangian, which includes only the end-effector
motion constraint as the joint and fixed-base constraints are
eliminated through substitution

L(q̈,λ) :=
n∑

i=1

1

2

(
ai −H−1

i fi
)T

Hi

(
ai −H−1

i fi
)
+ (14)

λT (Knan − kn) .

We define “cost-to-go Lagrangian” as the tail problem
consisting of the Lagrangian terms corresponding to the ith
link and its descendants

Vi(ai−1, q̈i, ..., q̈n,λ) :=
n∑

j=i

1

2

(
aj −H−1

j fj
)T

Hj

(
aj −H−1

j fj
)
+ λT (Knan − kn) .

Due to its additive structure, the cost-to-go Lagrangian
follows the recurrence relation (after simplifying the quadratic
objective and grouping the constant terms)

Vi(ai−1, q̈i, ..., q̈n,λ) =
1

2
aTi Hiai−fTi ai+

Vi+1(ai, q̈i+1, ...,q̈n,λ) + constant.

When convenient, we will drop constant terms from now
on for brevity. The Bellman’s recurrence relation [19] for the
optimal cost-to-go Lagrangian is

V ∗
i (ai−1,λ) = min

q̈i

{
1

2
aTi Hiai− fTi ai+V ∗

i+1(ai,λ)

}
. (15)

Optimizing the cost-to-go Lagrangian at the end-effector

Vn(an−1, q̈n,λ) =
1

2
aTnHnan − fTn an + λT (Knan − kn) ,

(16)

over q̈n gives V ∗
n (an−1,λ). To do this, we first substitute an

with the acceleration recursion equation in eq. (13b)

Vn(an−1, q̈n,λ) =

1

2
(an−1 + Snq̈n + ab,n)

T
Hn (an−1 + Snq̈n + ab,n)−

fTn (an−1 + Snq̈n + ab,n)+

λT (Kn (an−1 + Snq̈n + ab,n)− kn) . (17)

Then we collect the linear-quadratic terms in q̈n and solve for
the optimal q̈∗

n, where the quadratic function’s gradient is zero

q̈∗
n =

(
ST
nHnSn

)−1
ST
n

{
fn −Hn(an−1 + ab,n)−KT

n λ
}
,

substituting which back in eq. (17) provides V ∗
n (an−1,λ),

which remains a quadratic form in an−1 and λ. Therefore,
let us hypothesize that V ∗

i (ai−1,λ) minimizes the following
quadratic form

V ∗
i (ai−1,λ) = min

q̈i

{
1

2
aTi H

A
i ai −

1

2
λTLA

i λ+ (18a)

λTKA
i ai − fAT

i ai + lTi λ

}
+ constant

= min
q̈i

{
1

2
(ai−1 + Siq̈i + ab,i)

THA
i (ai−1 + Siq̈i + ab,i)−

1

2
λTLA

i λ+ λTKA
i (ai−1 + Siq̈i + ab,i)− (18b)

fAT
i (ai−1 + Siq̈i + ab,i) + lTi λ

}
+ constant.

where eq. (18b) is obtained by substituting eq. (13b) in
eq. (18a). Optimizing eq. (18b) over q̈i by setting the objective
function’s gradient to zero gives

q̈∗
i = D−1

i ST
i

{
fAi −HA

i (ai−1 + ab,i)−KAT
i λ

}
, (19)

where D−1
i :=

(
ST
i H

A
i Si

)−1 ∈ Rni×ni exists because Si

always has full column rank [34] and HA
i (which we will

show to be the articulated body inertia matrix) is positive
definite. Back-substituting q̈∗

i from eq. (19) in eq. (18b) gives
V ∗
i (ai−1,λ), substituting which in the Bellman recurrence re-

lation eq. (15) for V ∗
i−1(ai−2,λ) gives the following recursive

formulae for the hypothesized quadratic form in eq. (18a),

HA
i−1 = Hi−1 + PiH

A
i , (20a)

fAi−1 = fi−1 + Pi

(
fAi −HA

i ab,i
)
, (20b)

KAT
i−1 = PiK

AT
i , (20c)

li−1 = li +KA
i

{
ab,i + SiD

−1
i ST

i (f
A
i −HA

i ab,i)
}
, (20d)

LA
i−1 = LA

i +KA
i Si(Di)

−1ST
i K

AT
i , (20e)

where Pi :=
(
I6×6 −HA

i Si(Di)
−1ST

i

)
∈ R6×6 is the

projection matrix that propagates forces and inertia backward
through the ith joint.

The end-effector cost-to-go Lagrangian in eq. (16) conforms
to the hypothesized quadratic form in eq. (18a), with HA

n =
Hn, fAn = fn, KA

n = Kn, ln = −kn and LA
n = 0n×n being

the starting point of the backward recursion using eq. (20).
With this, we can show inductively that the assumed quadratic
form validly parameterizes the optimal cost-to-go-Lagrangian.



Performing backward recursion until the root link yields
V ∗
1 (a0,λ)’s expression, where the known value of a0 =
−agrav is directly substituted, thereby eliminating all the
primal variables of the Lagrangian to obtain the dual function

V ∗
0 (λ) = −

1

2
λTLA

0 λ+ λT
(
l0 +KA

0 a0
)
. (21)

Assuming that LA
0 has full rank, the dual function has the

unique maximizer

λ∗ =
(
LA
0

)−1 (
l0 +KA

0 a0
)
. (22)

The numerical value of λ∗ computed above enables rolling
out the “control policy” in a forward sweep to compute the
optimal joint accelerations q̈∗

i s using eq. (19) and eq. (13b).
1) Details on fi: fi is the resultant of all the non-constraint

forces acting on the ith link, namely the force due to ith joint
torque τi, the bias forces, the reaction force from τi+1 and all
the other the external forces

fi = Tiτi − vi ×∗ Hivi − Ti+1τi+1 + f exti . (23)

Note: the total reaction force on the ith link due to τi+1,
must also include the backward propagation of the force acting
on the i+1-th link due to τi+1, Ti+1τi+1, using eq. (20b) in
addition to the immediate reaction force −Ti+1τi+1,

−Ti+1τi+1+Pi+1(Ti+1τi+1) (24)

= −HA
i+1Si+1(Di+1)

−1ST
i+1Ti+1τi+1

= −HA
i+1Si+1(Di+1)

−1τi+1

which agrees with the known result on the backward reaction
forces applied by joint actuators [1, eq. 7.20].

2) Including the effect of gravity: The straightforward ap-
proach to account for gravity is to include the each link’s
weight in eq. (23), but a more efficient and commonly used
trick [48] is to add a gravity field by setting a0 ← −agrav,
where agrav. Then ai = −agrav if the ith link is in equilibrium
and ai = 0 if it is in free fall. This addition of gravitational
acceleration to each link’s acceleration must also be reflected
the acceleration constraints through the update

kn ← kn −Knagrav

IV. PHYSICAL INTERPRETATION

We will now provide the physical interpretation for the
backward recursion in eq. (20). This section is involved
for readers not familiar with existing propagation-based con-
strained dynamics literature and may be skipped/skimmed dur-
ing the first read. Pi is the projection matrix, that propagates
fi through the i-th joint to the i − 1-th link after removing
the component that causes the i-th joint’s motion. It is used in
eq. (20b) to propagate the forces backwards in the chain. Pi

also propagates the inertia of the descendant links through the
i-th joint in eq. (20a), to compute the well known articulated
body inertia HA

i . Suppose that the i-th link was disconnected
from its parent link but remained connected to its descendant
links, HA

i would be this link’s apparent inertia including the
influence of all the descendant links. Di is the apparent inertia
of the i-th link along the i-th joint, obtained by projecting HA

i

onto the i-th joint’s motion subspace Si.

In the absence of end-effector constraints, only eq. (20a)
and eq. (20b) need to be computed during the backward
recursion and these two formulae are identical to the inertia
and force propagation equations in Featherstone’s well known
articulated body algorithm (ABA) [16], which remains the
fastest algorithm to compute unconstrained forward dynamics
[1]. The PV solver reduces to ABA in the unconstrained setting
and an unconstrained LQR-based derivation would essentially
be an alternate derivation for the ABA algorithm.

Each row of Kn is the unit spatial force exerted by the end-
effector due to the associated constraint, whose magnitude (the
unknown Lagrange multipliers) must be solved for. These unit
constraint forces are propagated backwards in the chain sim-
ilarly to the non-constraint forces using the force propagator
matrix Pi in eq. (20c). Therefore, −KAT

i λ is the force felt at
the i-th link due to end-effector constraint forces.

Substituting the solution for joint accelerations from eq. (19)
into the acceleration recurrence relation in eq. (13b) gives

ai = PT
i (ai−1 + ab,i) + SiD

−1
i ST

i

(
fAi −KAT

i λ
)
, (25)

where PT
i is the projection operation that propagates ai−1

to child link i, after removing ai−1’s acceleration component
along Si. This reveals an interesting symmetric relationship
between the forward acceleration propagator PT

i and the
backward force propagator Pi about the i-th joint, previously
noted in [49]. Let us compose the force propagators to define
the extended force propagator [31]

Pn
i := PiPi+1...Pn, and Pn

n+1 := I6×6 (26)

that directly propagates end-effector forces to the i − 1-
th link. Due to the symmetric relationship, PnT

i propagates
accelerations from the i − 1-th link to the end-effector di-
rectly. Repeated substitution of eq. (19) for all joints in the
acceleration recurrence relation eq. (13b) gives

an = PnT
1 a0 +

n∑
i=1

PnT
i ab,i+ (27)

n∑
i=1

{
PnT
i+1SiD

−1
i ST

i

(
fAi −KAT

i λ
)}

.

From the constraint propagation equations in eq. (20c), one
can easily verify that

KA
i = KnP

nT
i+1. (28)

We remind readers that the end-effector acceleration con-
straint is Knan + ln = 0. Let us call Knan, constraint
acceleration (because it is the end-effector acceleration along
the constrained direction) and −ln the desired constraint
acceleration. Substituting an from eq. (27) in the acceleration
constraint equation and simplifying using eq. (28) gives

Knan + ln = KA
0 a0 +

n∑
i=1

KA
i PT

i ab,i+ (29a)

n∑
i=i

{KA
i SiD

−1
i ST

i (f
A
i −KAT

i λ)}+ ln = 0.

KA
0 a0 is the constraint acceleration due to the known fixed-

base acceleration. Collecting the terms not containing the



unknown λ in the previous equation and comparing with
backward recursion in eq. (20d), one can verify that

lAi−1 =

n∑
k=i

{
KA

k PT
k ab,k +

(
KA

k SkD
−1
k ST

k f
A
k

)}
+ ln, (30)

recursively computes constraint acceleration caused by the bias
accelerations, bias forces, joint torques and external forces up
to the i-th joint and updates the desired constraint acceleration
that must be supplied by the unknown constraint forces.
Comparing eq. (20e) and eq. (29), we see eq. (20e) recursively
computes the λ-dependent terms in eq. (29) with

LA
i−1 =

n∑
k=i

KA
k SkD

−1
k ST

k K
A
k (31)

where the j-th column of LA
i−1 is the constraint accelerations

caused by a unit magnitude j-th constraint force due to
motions along the joints from the n-th joint back up to the i-th
joint in the chain. LA

0 represents the inertial coupling between
constraints considering the whole tree’s motion, providing
intuition for why LA

0 must be the inverse OSIM Λ−1, which
was previously defined in the joint-space in eq. (5).

Λ−1 = JM−1JT = Kn

(
JnM

−1JT
n

)
KT

n , (32)

where JnM
−1JT

n maps any force acting on the end-effector
fn to end-effector acceleration caused due to this force

afn :=
(
JnM

−1JT
n

)
fn. (33)

From eq. (27), we collect all the terms depending on fn
that cause end-effector acceleration (remember that fAi also
depends on fn because of inward force recursion ) to get

afn =

{ n∑
i=1

PnT
i+1SiD

−1
i ST

i P
n
i+1

}
fn. (34)

In eq. (33) and eq. (34) have linear mappings from fn
to afn, where fn is free to take on any value in R6 and
the linear mappings depend only on qp. Thus, it must be
that JnM

−1JT
n =

∑n
i=1 P

nT
i+1SiD

−1
i ST

i P
n
i+1. Pre and post-

multiplying this equality with Kn and KT
n , we get

Kn

(
JnM

−1JT
n

)
KT

n =

n∑
i=1

KnP
nT
i+1SiD

−1
i ST

i P
n
i+1K

T
n ,

(35)

where using eq. (32), eq. (28) and eq. (31), we get Λ−1 = LA
0 .

The physical interpretation presented here is essentially the
argument used in [33] to derive their constrained dynamics
solver for kinematic loops, which we refer readers to for more
insight especially related to the effect of internal kinematic
loops. Compared to [33], our derivation is mathematical using
the DP algorithm and does not require readers to possess
physical insight. The physical interpretation provided here is
only a post hoc explanation. However, the derivation in [33]
does not assume prior optimization knowledge and may be
more accessible to some readers, especially for those familiar
with Featherstone’s ABA algorithm derivation [16] because
[33] is a natural extension of [16] that follows a similar
variable elimination approach.

V. EXTENSION TO TREES WITH FLOATING-BASE

We now extend the original PV solver, that only dealt
with end-effector constrained fixed-base kinematic chains, to
kinematic trees with possibly a floating-base and possibly
motion constraints on any link. We first modify the problem
formulation to allow kinematic trees in section V-A, solve it
using DP in section V-B and finally present the algorithm and
analyze the computational complexity in section V-C.

A. Problem formulation

The GPLC optimization problem for a given tree is

minimize
a,q̈

n∑
i=1

1

2

(
ai −H−1

i fi
)T

Hi

(
ai −H−1

i fi
)
, (36a)

subject to ai = aπ(i) + Siq̈i + ab,i, i = 1, 2, ..., n, (36b)
Kiai = ki, i = 1, ..., n, (36c)

where, π(j) and γ(j) are the parent link and the set of children
for any given link j respectively, as explained in section II-D.
Compared to the problem in eq. (13), the recurrence relation
in eq. (36b) is indexed differently due to the tree structure, and
any link’s motion can be constrained in eq. (36c). It is easily
verifiable that the problem remains a strongly convex QP, but it
is no longer analogous to a simple discrete-time LQR problem.
Instead, this problem shares its structure with scenario-trees
from control of systems with dynamics uncertainty [50].
However, the DP approach remains applicable and will provide
a tree-structured Riccati recursion [51].

B. Dynamic programming solution

Similarly to kinematic chains, we apply DP on the La-
grangian of the optimization problem in eq. (36)

L(q̈,λ1, ...,λn) =

n∑
i=1

{
1

2

(
aTi Hiai − fTi ai

)
+ (37)

λT
i (Kiai − ki)

}
.

For notational simplicity in the upcoming derivation, let us
define λA

i := [λT
i ,λ

AT
γ(i)1

,λAT
γ(i)2

...λAT
γ(i)C(i)

]T as the concate-
nation of the multipliers associated with constraints on the i-th
link and its descendants, where C(i) is the cardinality of the
set γ(i). Analogously to the eq. (15), the Bellman recurrence
for the optimal cost-to-go Lagrangian for the kinematic tree is

V ∗
i (aπ(i),λ

A) =min
q̈i

{
1

2
aTi Hiai − fTi ai + λT

i (Kiai − ki)+∑
j∈γ(i)

V ∗
j (ai,λ

A
j )

}
+ constant. (38)

Similarly to eq. (18a), let us hypothesize that the optimal
cost-to-go Lagrangian has the quadratic form

V ∗
i (aπ(i),λ

A
i ) = min

q̈i

{
1

2
aTi H

A
i ai −

1

2
λAT
i LA

i λ
A
i + (39)

λAT
i KA

i ai − fAT
i ai + lTi λ

A
i

}
+ constant.



Substituting ai above using eq. (36b) gives

V ∗
i (aπ(i),λ

A
i ) = min

q̈i

{
1

2
(aπ(i) + Siq̈i + ab,i)

THA
i (aπ(i)+

Siq̈i + ab,i)−
1

2
λAT
i LA

i λ
A
i + λAT

i KA
i (aπ(i)+

Siq̈i + ab,i)− fAT
i (aπ(i) + Siq̈i + ab,i)+ (40)

lTi λ
A
i

}
+ constant.

Optimizing this function for optimal q̈i gives

q̈∗
i = (Di)

−1ST
i

{
fAi −HA

i (aπ(i) + ab,i)−KAT
i λA

i

}
,
(41)

substituting which back into eq. (40) gives V ∗
i (aπ(i),λ

A
i ).

Substituting the expression V ∗
k (ai,λ

A
k ), thus computed for

all k ∈ γ(i) in Bellman recurrence relation eq. (38) confirms
that the optimal cost-to-go function has the quadratic form
hypothesized in eq. (39) for link i if the hypothesis holds for
all the children links k ∈ γ(i). The quadratic form for the i-th
link is given by the recursive equations

HA
i = Hi +

∑
k∈γ(i)

PkH
A
k , (42a)

fAi = fi +
∑

k∈γ(i)

Pk

(
fAk −HA

k ab,k
)
, (42b)

KA
i =


Ki

...
KA

k PT
k

...

 , (42c)

li =


−ki

...
lk +KA

k

{
ab,k + SkD

−1
k ST

k

(
fAk −HA

k ab,k
)}

...

 ,

(42d)

LA
i =


0mi×mi

. . .
LA
k +KA

k Sk(Dk)
−1ST

k K
AT
k

. . .

 .

(42e)

The cost-to-go Lagrangian at any leaf node conforms to the
assumed quadratic form with, HA

j = Hj , LA
j = 0mj×mj ,

KA
j = Kj , fAj = fj , lj = −kj for all j that are leaf links.

Therefore, it can be shown again inductively that the equations
assumed in eq. (39) correctly model the cost-to-go function.

For a fixed-base robot, the backward recursion is performed
until the base link 0, and the known fixed-base acceleration
is substituted to obtain the dual function, which is maximized
to compute the optimal dual variables λA∗

0 (assuming that LA
0

has full rank) analogously to eq. (22)

λA∗
0 =

(
LA
0

)−1 (
l0 +KA

0 a0
)
. (43)

For a floating-base robot, the backward sweep is conducted
until the floating-base link b, from where the optimal base

acceleration and the dual variables are the saddle point of the
optimal cost-to-go Lagrangian at the floating-base

λA∗
b ,a∗b = argmax

λA
b

{
min
ab

(1
2
aTb H

A
b ab −

1

2
λAT
b LA

b λ
A
b +

(44)

λAT
b KA

b ab − fAT
b ab + lTb λ

A
b

)}
.

The stationary gradient condition of the first-order necessary
KKT conditions provides the simultaneous linear equations,

a∗b =
(
HA

b

)−1 (
fAb −KAT

b λA∗
b

)
, (45)

λA∗
b =

(
LA
b

)−1 (
KA

b a∗b + lb
)
. (46)

We can substitute a∗b from eq. (45) in eq. (46) to get

λA∗
b =

(
LA
b +KA

b

(
HA

b

)−1
KAT

b

)−1 (
KA

b

(
HA

b

)−1
fAb + lb

)
,

(47)
and the optimal base acceleration is then recovered using
eq. (45) and the inverse OSIM matrix is

LA
0 =

(
LA
b +KA

b

(
HA

b

)−1
KAT

b

)
, (48)

which is no different from performing the usual backward
recursion at the free-joint b with, Sb = I6×6 as the free joint
is allowed to move in all directions.

Alternately, if LA
b is invertible one can also substitute the

expression for λA∗
b from eq. (46) in to eq. (45) to get

a∗b =
(
HA

b +KAT
b

(
LA
b

)−1
KA

b

)−1 (
fAb −KAT

b

(
LA
b

)−1
lb

)
,

(49)

and optimal Lagrange multipliers can then be recovered using
eq. (46). The accelerations of the rest of the segments are then
computed in the second forward sweep (rollout). The choice
computing eq. (47) or eq. (49) can significantly impact the
computational efficiency of the algorithm depending on the
branching structure and the number of constraints.

Suppose that kinematic tree branches at the floating-base,
then LA

b has a block-diagonal structure because the LA
i terms

from different branches occupy their respective diagonal block
in eq. (42e). Factorizing or inverting (LA

b )
−1 is easier due

to this block-diagonal structure. Then computing eq. (49)
requires solving a small linear system of fixed size 6×6, which
makes using eq. (49) a superior choice in this case. On the
other hand, computing eq. (48) performs a dense m×m update
to LA

b , which destroys the block-diagonal sparsity pattern and
then requires solving a dense linear system of size m×m.

C. Algorithm

Algorithm 1 presents the PV solver for kinematic trees with
floating-base. Let S be an ordered list of all the links in the
kinematic tree, such that i precedes j in the list if i-th link is
the j-th link’s ancestor. Let Sr be the reversed list of S. In
algorithm 1, we use eq. (49) instead of eq. (47).



Algorithm 1 PV solver for kinematic trees with floating-base

Require: qp, q̇, τ , Kis, kis, X{b}, v{b}, robot model
First forward sweep

1: for i in S do
2: X{i} = X{π(i)}

{π(i)}X{i′}
{i′}X{i}

3: vi = vπ(i) + Siq̇i

4: ab,i = vi × Siq̇i

5: fAi ← fAi + Tiτi − vi ×∗ Hivi + f exti ; KA
i ← Ki;

li ← −ki; LA
i ← 0mi×mi HA

i ← Hi;
fAπ(i) ← fAπ(i) − Tiτi

Backward sweep
6: for i in Sr do
7: Di = ST

i H
A
i Si; Pi = (I6×6 −HA

i Si(Di)
−1ST

i )
8: fAπ(i) ← fAπ(i) + Pi(f

A
i −HA

i ab,i)

9: HA
π(i) ← HA

π(i) + PiH
A
i

10: KA
π(i) ←

[
KA

π(i)

KA
i PT

i

]
11: LA

π(i) ←
[
LA
π(i)

LA
i +KA

i Si(Di)
−1ST

i K
AT
i

]
12: lπ(i) ←

[
lπ(i)

li +KA
i {ab,i + SiD

−1
i ST

i (f
A
i −HA

i ab,i)}

]
13: a∗b = (HA

b +KAT
b (LA

b )
−1KA

b )−1(fAb −KAT
b (LA

b )
−1lb)

14: λA∗
b = (LA

b )
−1(KA

b a∗b + lb)
Second forward sweep (roll-out)

15: for i in S do
16: q̈∗

i = (ST
i H

A
i Si)

−1ST
i {fAi −HA

i (aπ(i) + ab,i)−
KAT

i λA∗
i }

17: ai = aπ(i) + Siq̈
∗
i + ab,i

1) Computational complexity: We now analyze the worst-
case computational complexity of algorithm 1. The computa-
tions in lines 2, 3, 4, 5, 7, 8, 9, 17 each require fixed number
of operations at every joint and requires O(n) operations in
total. The lines 10, 12, 16 require O(m) operations per at
most d executions, where d is the depth of the tree requiring
O(md) operations. Line 11 needs O(m2) operations per joint
and O(m2d) operations in total. Factorizing LA

b in line 13 has
the worst case complexity of O(m3). Aggregating these terms,
the algorithm has requires O(n+m2d+m3) operations in the
worst case.

Best case complexity: The computational complexity is sig-
nificantly better than the worst case complexity for favorable
tree structures and constraints. Suppose that the branching
occurs at the (floating) base link and there is one end-effector
(a constrained link with at most 6 dimensional constraint)
per branch. Quadrupeds and humanoid robots often have this
structure. Let r be the number of branches and d be the
length of the longest branch. Line 11 is executed d times for
r branches leading to O(dr) operations. Similarly factorizing
the block-diagonal matrix LA

b needs O(r) operations for each
block of size at most 6×6. As m = O(r), the total complexity
of the constrained dynamics for this tree is O(n+md+m).

The equality of Λ−1 and L0 established in section IV can be
repeated for kinematic trees as well using identical arguments
and hence will be skipped for the sake of brevity.

VI. SOFT GAUSS’ PRINCIPLE

We have considered only hard motion constraints so far, but
it is also conceivable to relax these motion constraint through a
penalty method and solve this easier problem, which is further
always feasible even if the constraints are linearly dependent.
This is precisely the approach taken in the MUJOCO toolbox
[42], [7], a popular rigid body dynamics simulator using
the so-called “soft Gauss’ principle”, where the hard motion
constraints are relaxed through a quadratic penalty,

minimize
a,q̈

n∑
i=1

1

2

{(
ai −H−1

i fi
)T

Hi

(
ai −H−1

i fi
)
+

(Kiai − ki)
T
R−1

i (Kiai − ki)
}
, (50a)

subject to ai = aπ(i) + Siq̈i + ab,i, i = 1, 2, ..., n, (50b)

where Ri ∈ Rmi×mi is a diagonal positive definite matrix.
After expanding the objective function in eq. (50a), collecting
the quadratic and linear terms and ignoring the constant terms,
we get an equivalent optimization problem,

minimize
a,q̈

n∑
i=1

{
1

2
aTi

(
Hi +KT

i R
−1
i Ki

)
ai −

(
fi +KiR

−1
i ki

)T
ai

}
+ const, (51a)

subject to ai = aπ(i) + Siq̈i + ab,i, i = 1, 2, ..., n, (51b)

which is a special case of the kinematic tree optimization
problem in eq. (36), but without motion constraints (apart
from the joint constraints in eq. (50b) which will be eliminated
through substitution) and with the modified Hi and fi terms

Hi ← Hi +KT
i R

−1
i Ki; fi ← fi +KiR

−1
i ki. (52)

As there are no motion constraints, the LA
i , li and KA

i terms
are not computed for the soft Gauss’ problem, for which the
algorithm 1 reduces simply to ABA with the update in eq. (52).

A. Computational complexity

The ABA has O(n) complexity while the inertia and forces
updates in eq. (52) require O(m) operations. Therefore, the
total computational complexity for solving the soft Gauss’
principle is O(m+ n).

The state-of-the-art simulator MuJoCo solves the problem in
the joint-space resulting in a significantly higher computational
complexity of O(nd2+m2d+d2m). It uses the composite rigid
body algorithm (CRBA) algorithm [52, Method 3] to compute
the JSIM and factorizes it, which has worst-case complexity
of O(nd2). It considers constraints by modifying the JSIM [7,
eq. 7] analogously to our inertia update in eq. (52) and solves
this updated inertia matrix using the matrix inversion lemma
accounting for the additional terms in the complexity.

VII. O(n) ALGORITHM FOR OSIM
The OSIM itself is an important expression in many rigid-

body simulators in both the robotics and the computer graphics
(where its inverse is known as the Delassus operator) com-
munities. It also has applications in constrained inverse dy-
namics [53] and dynamically-consistent nullspace projection



in prioritized torque control [54]. OSIM is particularly useful
for resolving inequality constraints (also called unilateral con-
straints), because an inequality constraint becoming inactive
can be easily handled by removing the corresponding row and
column of the inverse OSIM and efficiently updating the fac-
torization [55]. Therefore, we isolate the OSIM computations
in the PV solver and present a stand-alone algorithm. Further,
we propose an at-best structure exploitation for floating-
base robots that avoids factorizing the dense inverse OSIM,
which all the existing approaches perform, to the best of
our knowledge. Finally, we end the section with a qualitative
comparison of the proposed algorithm with the existing O(n)
complexity OSIM solvers KJR [28] and EFPA [31].

A. The PV-OSIM algorithm

Algorithm 2 lists the PV solver computations necessary for
the OSIM.

Algorithm 2 The PV-OSIM algorithm

Require: qp, Kis, robot model
First forward sweep

1: for i in S do
2: X{i} = X{π(i)}

{π(i)}X{i′}
{i′}X{i}

3: KA
i ← Ki; LA

i ← 0mi×mi HA
i ← Hi;

Backward sweep
4: for i in Sr do
5: Di = ST

i H
A
i Si; Pi = (I6×6 −HA

i Si(Di)
−1ST

i )
6: HA

π(i) ← HA
π(i) + PiH

A
i

7: KA
π(i) ←

[
KA

π(i)

KA
i PT

i

]
8: LA

π(i) ←
[
LA
π(i)

LA
i +KA

i Si(Di)
−1ST

i K
AT
i

]
9: if floating-base? then

10: LA
0 = (LA

b +KA
b (HA

b )−1KAT
b )

11: Λ = (LA
0 )

−1

B. The PV-OSIM-fast for floating-base robots

For floating-base trees with branching at the base link, LA
b

has block diagonal structure. This sparsity structure is lost in
the update in line 10 in algorithm 2 (eq. (48)) by adding a
dense matrix to LA

b . The inverse OSIM (and the OSIM) is a
dense matrix for floating-base robots because the constraints
on different branches are coupled through the floating-base.
All existing approaches, that we know of, compute this dense
inverse OSIM and factorize it, which scales poorly in the
presence of many constraints. We propose to avoid this by
exploiting the structure of the update in eq. (48).

The update to LA
b in eq. (48) is structurally a symmetric

rank-6 update. If we assume that LA
b is invertible, which is a

reasonable assumption for floating-base robots like humanoids
and quadrupeds during operation, the matrix inversion lemma
(MIL) [56] can be used to factorize LA

0 without having to
explicitly construct this dense matrix. The MIL states

(A+ UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1,

(53)

applying which to solve eq. (48) yields(
LA
0

)−1
=

(
LA
b

)−1 −
(
LA
b

)−1
KA

b

{
HA

b + (54)

KAT
b

(
LA
b

)−1
KA

b

}−1
KAT

b

(
LA
b

)−1
,

= Λb − ŁK

{
HA

b +KAT
b ŁK

}−1
ŁT
K (55)

where Λb :=
(
LA
b

)−1
(easy to compute because of its block

diagonal structure which is retained even after inversion) and
ŁK := ΛbK

A
b . Please note that the right-hand side (RHS) of

the above equation is not evaluated to get the
(
LA
0

)−1
matrix

as that would destroy sparsity. Instead, the RHS is meant to
be directly multiplied with vectors, similarly to how solving a
linear system involves factorization and not matrix inversion.

1) Computational complexity of PV-OSIM-fast: The orig-
inal PV-OSIM algorithm, computes and factorizes the dense
LA
0 , which requires O(m3) operations. In contrast, the struc-

ture exploiting method computes Λb, which requires O(m
3

r2 )

operations, and LK , which requires O(m
2

r ) operations, bring-
ing the total complexity to O(m

3

r2 ), where we have assumed
for simplicity of analysis that the m constraints are equally
distributed among the r branches. Thus, the proposed al-
gorithm in this subsection can provide a significant speed-
up for factorizing the inverse OSIM of floating-base robots
with a favorable branching structure compared to the existing
approaches that all solve dense linear systems.

Limitation of PV-OSIM-fast: Strictly speaking, PV-OSIM-
fast is applicable in a subset of the cases where the regular
PV-OSIM is applicable because of its assumption that LA

b is
invertible. It is possible that LA

b is not invertible, but LA
0 is

invertible due to the addition of symmetric rank-6 matrix in
eq. (48). This situation may occur if there is a high dimensional
constraint applied on a link close to the base link or if the robot
reaches a kinematically singular configuration.

C. Comparison with existing O(n) OSIM algorithms

We now compare the PV-OSIM algorithm with the existing
recursive O(n) algorithms: the KJR algorithm [22], [28],
whose optimized version was presented in [32], and the
extended force propagator algorithm (EFPA) [31]. The three
algorithms share the main idea of propagating the inverse iner-
tia matrices, but differ significantly in the details. The primary
structural difference of the PV-OSIM is that it computes the
inverse OSIM in two sweeps while both KJR and EFPA require
three sweeps.

This difference arises because PV-OSIM computes inverse
inertia due to the motion of the ith joint and its descendants
directly in the constraint space LA

i during the backward
sweep, using the EFP to propagate constraint forces to a joint
and the constraint accelerations back to the constrained link.
However, both KJR and EFPA first compute the articulated
body inertia in a backward sweep and then compute the spatial
inverse inertia matrices of size 6 × 6 for all the necessary
links in a forward sweep, which is avoided in the PV-OSIM.
Propagating spatial inverse inertia matrices is a particularly
expensive operation since they need to be transformed from
one link’s frame to another’s (because dynamics algorithms
are efficiently implemented in the link frame) in KJR and



EFPA. This transformation is not required in PV-OSIM be-
cause the inverse inertia is directly computed in the constraint
space. Then KJR and EFPA compute the relative inverse
inertia (essentially the matrix that maps forces on one link
to the accelerations caused on another link) between every
pair of links that are constrained. KJR performs computation
inefficiently by propagating the relative spatial inverse inertia
matrices through the path connecting two constrained links for
every possible pair of constrained links. EFPA computes the
relative inverse inertia matrices more efficiently by directly
transmitting the constraint forces and accelerations between
constrained links through a common ancestor link using EFP.
Finally, after all these inverse inertia matrices are computed,
EFPA and KJR project them to the constraint space to get the
inverse OSIM.

Thus, the PV-OSIM appears to exploit the structure of the
problem better by using one less sweep to compute the inverse
OSIM and its computational performance relative to existing
OSIM algorithms will be benchmarked in section IX-B. It must
be noted that despite performing some extra computations, the
EFPA algorithm has a lower order computational complexity
of O(n + md + m2) compared to the O(n + m2d + m2)
complexity of the PV-OSIM for computing the inverse OSIM.
Therefore, for kinematic trees of high depth and many con-
straints, we can expect the EFPA algorithm to be faster than
the PV-OSIM, which we test in section IX-B.

Also, note that the derivation of KJR or EFPA is complex
and requires significant knowledge of and insight into efficient
dynamics algorithms literature, while the PV-OSIM derivation
is relatively simpler and self-contained as we are able to derive
it from first principles (Gauss’ principle) within this paper.
Moreover, all the existing approaches compute and factorize
the dense inverse OSIM matrix for floating-base robots, which
the PV-OSIM-fast algorithm in section VII-B avoids.

VIII. EARLY MULTIPLIER RESOLUTION

The original PV solver first eliminates the primal variables,
recursively computes the inverse OSIM and factorizes it,
which results in a worst case O(n+m2d+m3) complexity.
This can get particularly expensive when m ∼ O(n). However,
if computing the OSIM is not required (for some other
purpose during control or simulation), we can generalize the
elimination ordering by aggressively eliminating dual variables
earlier during the backward sweep to obtain an algorithm with
an improved complexity of only O(n + m). We now derive
this algorithm by adapting our original PV solver derivation.
This early elimination idea was already partly introduced in
eq. (49), when we eliminated the dual variables just before
eliminating ab and will be further developed now. A form of
early elimination is also proposed in [33], where they eliminate
the constraint forces of an internal kinematic loop as soon as
all the link accelerations within that loop are eliminated.

According to Bellman’s principle of optimality [19], the
solution to an optimization problem also optimizes its tail sub-
problem. Hence, for the tail sub-problem at the i-th link

λA∗
i (aπ(i)) = argmax

λA

V ∗
i

(
aπ(i),λ

A
i

)
. (56)

The objective function above is of the form in eq. (39) and
is guaranteed to be bounded above and have a solution only
when LA

i has full rank. There is a rank-ni update to LA
i at

every i-th joint during the backward recursion (see eq. (42e))

LA
i ← LA

i +KA
i Si(Di)

−1ST
i K

AT
i (57)

Substituting the singular value decomposition (SVD) [45] of
LA
i in eq. (39) gives

λA∗
i = argmax

λA

{
−1

2
λAT
i

[
U1
i U2

i

] [Σi

0

] [
U1T
i

U2T
i

]
λA
i +

aTi K
AT
i

[
U1
i U2

i

] [U1T
i

U2T
i

]
λA
i + (58)

lTi
[
U1
i U2

i

] [U1T
i

U2T
i

]
λA
i

}
+ constant,

where Σi ∈ Rmir×mir is the diagonal matrix of the positive
singular values, U1

i ∈ Rmif×mir and U2
i ∈ R(mif )×(mif−mir)

are the singular vectors corresponding to the positive and zero
singular values of LA

i , respectively, mir and mif are the rank
and the size of LA

i , respectively. The left and right singular
vectors are equal because LA

i is symmetric. Moreover, the
singular vectors are orthonormal[

U1
i U2

i

] [U1T
i

U2T
i

]
= Imif×mif

, (59)

which we use to project λA
i , KA

i and li to two mutually
orthogonal linear bases,

λ̃A
i = U1T

i λA
i , λ̂A

i = U2T
i λA

i , (60)

K̃A
i = U1T

i KA
i , K̂A

i = U2T
i KA

i ,

l̃i = U1T
i li, l̂i = U2T

i li,

where λ̃A
i ∈ Rmir , K̃A

i ∈ Rmir×6, l̃i ∈ Rmir and λ̂A
i ∈

R(mif−mir), K̂A
i ∈ R(mif−mir)×6, l̂i ∈ R(mif−mir) are the

components of λA
i , KA

i and li in the basis spanned by the sin-
gular vectors U1

i and U2
i respectively. Using these quantities,

the optimization problem in eq. (58) can be decoupled into a
separate optimization problem and a dual feasibility condition
along the columnspace and nullspace of LA

i , respectively,

λ̃A
i = argmax

λ̃A
i

{
−1

2
λ̃AT
i Σiλ̃

A
i + aTi K̃

AT
i λ̃A

i + l̃Ti λ̃
A
i

}
,

(61a)

K̂i
A
ai + l̂i = 0. (61b)

The solution to eq. (61a) is easily computed due to the
diagonality of Σi,

λ̃A∗
i = Σ−1

i

(
K̃A

i ai + l̃i

)
. (62)

Substituting eq. (62) back into the cost-to-go Lagrangian in
eq. (39) gives the following updates to its terms,

HA
i ← HA

i + K̃AT
i Σ−1

i K̃A
i , fAi ← fAi + K̃AT

i Σ−1
i l̃i,

KA
i ← K̂A

i , li ← l̂i, λA
i ← λ̂A

i ,

LA
i ← 0(mif−mir)×(mif−mir). (63)



The backward recursion is performed using these modified
terms in eq. (42). The early elimination is performed at
each joint after LA

(i) is updated, which resets LA
(i) to zero

matrix. Early elimination reduces the number of propagated
constraints at each i-th joint by mir, which is the rank of
KA

i Si and usually equal to ni, except in the case of redundant
constraints or kinematic singularities. If all the constraints are
eliminated before reaching the root node, the backward sweep
reduces to the ABA algorithm.

During the forward sweep, the optimal λA∗
i is reconstructed

using λ̃A∗
i from eq. (62) and λ̂A∗

i (available from the previous
link) by transforming back to the original basis

λA∗
i = U1

i λ̃
A∗
i + U2

i λ̂
A∗
i . (64)

For the common case of a single d.o.f joint, LA
i under-

goes a rank-1 update in eq. (57) and computing its SVD is
computationally simple, with the singular vectors given by the
following symmetric reflection matrix 3,

[
U1
i U2

i

]
= Imif×mif

− 2
wiw

T
i

wT
i wi

, (65)

and the positive singular value is

Σi =
[
∥KA

i Si∥2/Di

]
(66)

where

wi = KA
i Si +

(
KA

i Si

)
1

|
(
KA

i Si

)
1
|
∥KA

i Si∥e1, (67)

where
(
KA

i Si

)
1

is the first element of the vector
(
KA

i Si

)
and

e1 is the first canonical basis vector.

Remark 6 Since the rank-1 update SVD can be computed
using just KA

i Si and Di, the LA
i matrix need not be explicitly

updated. Furthermore, U1
i and U2

i matrices are not explicitly
computed either because they are only needed for multiplying
other matrices in eq. (60) and eq. (64), which is efficiently
achieved by simply multiplying the right-hand-side of eq. (65).
For example,

[
K̃A

i K̂A
i

]
=

{
Imif×mif

− 2
wiw

T
i

wT
i wi

}
KA

i . (68)

Remark 7 The eq. (67) assumes
(
KA

i Si

)
1
̸= 0. If(

KA
i Si

)
1
= 0, the rows of KA

i Si are permuted such that(
KA

i Si

)
1
̸= 0, similarly to the pivoting methods in matrix

factorization algorithms [45].

Remark 8 If KA
i Si = 0mif×1, the ith joint’s acceleration is

unaffected by the constraint forces KAT
i λA

i . In this case, the
rank-1 update of LA

i in eq. (57) would only add a zero matrix
and is not performed. The terms KA

i and li are propagated to
the parent link as in the original solver using eq. (42c) and
eq. (42d) without size reduction.

3https://math.stackexchange.com/questions/704238/singular-value-
decomposition-of-rank-1-matrix

Complexity analysis

The PV-early solver’s salient feature compared to the PV
solver is that LA

i is not computed (hence LA
0 is not factorized)

and the matrices KA
i and lAi reduce in size during the

backward sweep instead of growing with the accumulation of
constraints. If the number of rows of KA

i and lAi is bounded
by 6, the complexity of the PV-early solver is O(n+m), as the
number of operations at every joint is bounded by a constant.

Remark 9 If the KA
i and lAi have more than 6 rows in

the PV-early solver, it implies an over constrained system
with more than 6 constraints on a link’s acceleration. Then
either the constraints are feasible with redundant constraints
or infeasible, when one can remove the redundant constraints
to obtain a constraint matrix KA

i with at most 6 rows or declare
infeasibility early respectively.

IX. EXPERIMENTS AND DISCUSSION

We now benchmark and discuss the proposed algorithms.
We 1) explain our implementation, 2) benchmark the OSIM
computation 3) benchmark the constrained dynamics algo-
rithms themselves 4) empirically test the computational scaling
of the different algorithms 5) discuss results and limitations
of the proposed algorithms.

A. Implementation

We implemented the algorithms by extending Featherstone’s
highly readable MATLAB software toolbox SpatialV2 [57].
For computing the OSIM, we implemented PV-OSIM and PV-
OSIM-fast algorithms and to benchmark them we also imple-
mented the KJR, EFPA and LTL [32], [43] algorithms. For
computing the constrained dynamics, we implemented PV, PV-
early and the PV-soft algorithms and to benchmark them we
also implemented the constrained dynamics algorithms using
Featherstone’s sparsity-exploiting LTL approach considering
both the hard and the soft motion constraints. Robot specific
C-code was generated for these algorithms using CASADI’s
scalar expressions (SX) [58] and its runtimes are used for the
comparison. All the numerical experiments are performed on
a single CPU core on a laptop with Intel i7-8850H CPU @
2.60GHz processor running an Ubuntu 18.04 operating system.
We disabled Intel Turbo Boost during the benchmarking to
reduce CPU frequency variability.

Implementing rigid body dynamics algorithms efficiently
involves various nuances discovered by the robotics commu-
nity over the years. For example, computing quantities in
the local body frame instead of the inertial world frame can
significantly reduce the number of operations needed [48].
Thus our implementation also uses body frame though the
derivation of the algorithms in this paper uses inertial frame
for notational simplicity. Also using the Denavit-Hartenberg
(DH) structure for modelling the robot kinematics, whenever
possible, makes the dynamics algorithms more efficient [59].
However, this is not always possible, e.g. for kinematic trees,
where a parent link can, in general, have DH structure with
only one of the children joints. [32], [43] carefully accounted
for these nuances in their comparison of the LTL and ABA



algorithms. Additionally, robot design can also significantly
influence the operation count, e.g. some links in the Kuka
Iiwa have a 90-degree rotation between the parent joint’s axis
and the child joint’s axis, resulting in a rotation matrix with
only 3 non-zeros (either 1 or -1) requiring even fewer compu-
tations than DH nodes. Therefore, an algorithm’s operation
count is robot-specific, and manually counting them for a
given robot and constraint combination taking into account
all the computational nuances would be tedious. Conveniently,
CASADI’s SX expression graph of an algorithm automatically
provides the operation count allowing us to compare the
best possible robot-specific operation count of the different
algorithms, which we report later in this section.

Our implementation further uses simple optimizations such
as avoiding matrix-matrix operations whenever possible, and
performing Cholesky factorization and solve instead of com-
puting matrix inverses. The source code of the implementa-
tion 4 and the simulation videos of the proposed algorithms 5

are made available. Baumgarte’s stabilization was used in the
simulations to stabilize the constraints over a long period of
time [60], choosing a stabilization period of 0.1 seconds to
avoid overly stiff dynamics as suggested in [1, Section 8.3],
which interested readers are referred to for further details.

In our numerical experiments below, H and H3 denotes a
general 6D and 3D constraint on the ‘hand’ link of a robot,
with the corresponding Ki being a random matrix of size 6×6
and 3× 6 respectively. F and F3 are defined similarly for the
‘foot’ link. For the Iiwa, the end-effector was considered the
hand link.

B. Benchmarking the OSIM algorithms

Figure 2 gives the operation count along with internal break-
down for the proposed PV-OSIM and PV-OSIM-fast algo-
rithms along with the existing SOTA O(n+md+m3) EFPA
algorithm [31] and the SOTA sparsity-exploiting O(nd2 +
m2d + dm2) LTL-OSIM algorithm [32]. Similarly to [31],
we found KJR to be significantly slower than EFPA for all
the considered robots and KJR would also scale worse due to
its higher complexity, hence we omit the KJR results.

We found PV-OSIM to be more efficient than the EFPA for
all the considered robots. With the computation of articulated
body inertia IA, the task-space EFP KA and the Cholesky
decomposition of inverse OSIM requiring the same number
of computations for both algorithm, the difference arises in
the inverse OSIM Λ−1 computation. This is because EFPA
requires an additional forward sweep, that propagates inverse
inertia matrices forward with expensive similarity transforma-
tions, unlike the PV-OSIM as discussed in section VII-C.

LTL-OSIM was the fastest algorithm for the KUKA Iiwa,
which has only 7 d.o.f. However, for the 18 d.o.f Go1 robot
the PV-OSIM was already slightly faster than the LTL-OSIM
due to its lower computational complexity. For bigger robots
like the Atlas (37 d.o.f) and Talos (50 d.o.f), LTL was the
slowest of all the considered algorithms due to its higher
computational complexity. A major difference between the

4https://github.com/AjSat/spatial V2
5https://tinyurl.com/z78hkaah

LTL vs EFPA comparison in [31] (which found EFPA to be
slower than LTL for the Honda Asimo robot) and ours is that
we also include the cost of computing the constraint Jacobian
computation J in the LTL algorithm. We believe this to be a
fairer comparison because the PV-OSIM and EFPA algorithms
do not require J . KA propagates forces and accelerations from
end-effectors to other links fulfilling a role similar to J in
LTL. For fewer number of constraints, both PV-OSIM and
EFPA are faster than LTL for the Atlas robot. However, if we
assume that J is computed elsewhere and is available for re-
use, its computation cost can be excluded from LTL operation
count. Then our findings would concur with [31], where LTL
would be faster than EFPA for Atlas with 18 or 24 constraints,
but still slower than the PV-OSIM. For Talos, LTL was not
competitive with the lower order methods especially due to
the expense of computing and factorizing a bigger JSIM.

The PV-OSIM-fast avoids computing and factorizing the
dense inverse OSIM matrix explicitly using the matrix inver-
sion lemma, and scales better than the PV-OSIM as the size
of the OSIM matrix increases. It is the fastest algorithm for
the considered floating-base robots and even nearly 2x faster
than the LTL for the humanoid robots.

Though the PV-OSIM was computationally faster than the
EFPA for all the considered robots, the EFPA has a lower order
computational complexity of O(n + md + m2) compared to
the O(n + m2d + m2) of the PV-OSIM for computing the
inverse OSIM Λ−1. This would make EFPA scale better than
PV-OSIM for longer mechanisms with many constraints. To
test this, we consider a long-stemmed mechanism (nstem is the
number of links in the stem). From both stem ends, mbranches

chains of 7 links each branch out as shown in fig. 2e. Each
branch’s tip link is fixed with a 6D weld constraint.

Figure 2f shows the computational scaling of the ratio
of PV-OSIM and EFPA operation counts w.r.t to nstem for
different values of mbranches. EFPA was found to be always
slower than PV-OSIM for up to 8 branches (8× 6 constraints
propagated) irrespective of nstem. For 9 or more branches, the
EFPA eventually becomes more efficient than PV-OSIM at a
cross-over point stem length nstem. The value of the crossover
point depends on mbrances as well as the branches’ link length
for the considered mechanism. More branches would reduce
the cross-over point as EFPA can more efficiently propagate
large number of constraints through the stem links. Shorter
branch length can also reduce the cross-over point because
the constraint propagation through the stem links (where
EFPA is more efficient than PV-OSIM) will form a fraction
of the computations. For a mbranches = 10, the cross-over
nstem = 54 for branch length of 7, which is a very large
mechanism with 54+ 10× 7× 2 = 194 links. For an extreme
branch length of only 1 link, the cross-over nstem can be as
small as 7. Based on these findings, we conclude that the
PV-OSIM requires fewer operations for most realistic robot
mechanisms unless one is considering a heavily constrained
mechanism with most constraints propagated through a large
fraction of the joints.

https://github.com/AjSat/spatial_V2
https://kuleuven-my.sharepoint.com/:f:/g/personal/ajay_sathya_kuleuven_be/EkuNpQF8BF5NhMiFajeiskIB0steWelFr_sxQkGa1P_Nrg?e=GS9SPg


Number of constraints

0

5000

10000

15000

20000

25000

30000

12(FF) 18(FFH) 24(FFHH)

N
um

be
ro

fo
pe

ra
tio

ns

IA IA IA
M

KA KA KA

LTLLA
1
Λ−1

Λ−1 J
Λ

chol

chol Y

Λ−1
chol

IA IA IA
M

KA KA KA
LTL

LA
1

Λ−1
Λ−1

JΛ

chol

chol

Y

Λ−1

chol

IA IA IA
M

KA KA KA
LTL

LA
1

Λ−1
Λ−1

JΛ

chol

chol

Y

Λ−1

chol
PV-f
PV
EFP
LTL

(a) Comparing the OSIM algorithms on the Atlas robot.

24(FFHH)
Number of constraints

0

5000

10000

15000

20000

25000

30000

35000

40000

N
um

be
ro

fo
pe

ra
tio

ns

12(FF) 18(FFH)

IA IA IA
M

KA KA KA

LTL

LA
1
Λ−1Λ

−1

J

Λ chol
chol

Y
Λ−1
chol

IA IA IA
M

KA KA KA

LTL

LA
1

Λ−1
Λ−1

J

Λ

chol

chol

Y

Λ−1
chol

IA IA IA
M

KA KA KA

LTL
LA
1

Λ−1
Λ−1

J

Λ

chol

chol
Y

Λ−1

chol
PV-f
PV
EFP
LTL

(b) Comparing the OSIM algorithms on the Talos robot.

6(F3F3) 12(F3F3F3F3)
Number of constraints

0

1000

2000

3000

4000

5000

6000

7000

N
um

be
ro

fo
pe

ra
tio

ns

IA IA IA M

KA KA KA LTLLA
1

Λ−1
Λ−1

JΛ

chol
chol

Y
Λ−1

chol

IA IA IA M

KA KA KA LTL

LA
1

Λ−1
Λ−1

J
Λ

chol

chol

Y

Λ−1

chol

PV-f
PV
EFP
LTL

(c) Comparing the OSIM algorithms on the Unitree Go1
quadruped.

3(H3) 6(H)
Number of constraints

0

500

1000

1500

2000

2500

3000

N
um

be
ro

fC
PU

in
st

ru
ct

io
ns

IA IA M

KA
KA

LTL

Λ−1
Λ−1

J

chol
chol

Y
Λ−1chol

IA IA M

KA

KA

LTL

Λ−1
Λ−1

J

chol

chol

Y
Λ−1
chol

PV
EFP
LTL

(d) Comparing the OSIM algorithms on the KUKA Iiwa ma-
nipulator.

Stem

Branches

6D weld constraints

(e) The long stalk on which the computational scaling is studied. 0 20 40 60 80 100

Number of links in the stem

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
at

io
of

op
er

at
io

n
co

un
t,

PV
:E

FP 1
2
3
4
5
6
7
8
9
10

(f) Computational scaling of PV-OSIM vs EFPA. The key
indicates the number of branches on either side of the long
stalk for the mechanism in fig. 2e.

Fig. 2: Benchmarking the number of computation operations of the OSIM algorithms for various robots.

C. Benchmarking CDAs

We compared the PV solver, PV-e solver and the PV-s
solver with the state-of-the-art sparsity exploiting LTL solver
of Featherstone [43], [32]. The LTL-OSIM [32] solver is

a popular algorithm implemented in the high-performance
simulator software PINOCCHIO [61]. The LTL solver is also
used in MUJOCO [42] which uses a joint-space version of the
soft-Gauss principle. To make a fair comparison with the LTL



TABLE II: Benchmarking computational performance of PV
solver with other constrained dynamic solvers in MUJOCO
and PINOCCHIO. All times are in microseconds.

Robot PV PV-e LTL Pin∗ PV-s LTL-s Mu∗

Iiwa (0D) 0.55 0.55 0.63 2.15 0.55 0.63 3.11
Iiwa (H3) 0.75 0.61 0.83 2.73 0.61 0.80 4.45
Iiwa (H) 1.01 1.09 1.08 3.53 0.63 0.89 4.88
Go1 (0D) 1.65 1.67 1.74 4.68 1.64 1.74 7.10
Go1 (F3) 1.88 1.81 1.96 5.61 1.70 1.84 11.2

Go1 (2F3) 2.10 1.98 2.20 6.40 1.76 1.98 12.0
Go1 (3F3) 2.32 2.14 2.48 7.33 1.82 2.16 12.8
Go1 (4F3) 2.53 2.33 2.85 8.20 1.90 2.33 13.5
Atlas (0D) 3.44 3.47 4.64 12.3 3.47 4.64 15.9
Atlas (F) 4.59 3.94 5.88 15.4 3.61 5.58 31.5
Atlas (2F) 6.09 4.40 7.52 18.5 3.73 6.61 34.2

Atlas (2F+H) 7.37 5.03 8.69 22.3 3.76 6.93 36.5
Atlas(2F+2H) 8.27 5.52 11.8 26.5 3.82 7.77 38.8

Talos (0D) 4.92 4.97 8.14 17.1 4.96 8.28 23.6
Talos (F) 5.63 5.48 9.25 21.1 4.96 8.65 51.3
Talos (2F) 6.72 6.45 10.9 25.2 4.99 9.21 54.3

Talos (2F+H) 8.40 7.06 13.4 30.0 5.08 10.6 57.0
Talos(2F+2H) 10.13 7.40 15.4 34.7 5.11 11.9 59.4

∗ Pin and Mu are nominal execution of PINOCCHIO and MUJOCO without
code-generation and hence cannot be considered fair comparison.

solvers, we implemented them ourselves and table II reports
the computation time taken by the different algorithms. The
type and the number of constraints imposed are reported next
to the robot name in parentheses.

The computation times for the nominal C++ and C exe-
cution of PINOCCHIO (Pin) and MUJOCO (Mu) respectively
cannot be considered a fair comparison because they do not
use code-generation (which prunes unnecessary computations)
and may compute additional quantities that are not required
for constrained dynamics. We still report their computation
timings for reference and indicative purpose of the speed-ups
these software may achieve by exploiting code-generation.

1) Hard motion constraints: The PV-solver was as fast or
faster than the sparsity-exploiting LTL methods for all the
considered robots. The difference, while negligible for the 7
d.o.f Iiwa robot, widens for larger robots and more constraints
due to its lower order complexity. Our PV-e solver scales even
better than the PV solver, due to its lower order complexity
of O(n+m). For larger robots like Atlas or Talos with a high
number of constraints, PV-e offers nearly a 50% and 30%
reduction in computation compared to LTL and the PV-solver
respectively.

2) Soft constraints: The last three columns of the table II
present the computation times of our PV-s solver (see sec-
tion VI), our implementation of the MUJOCO’s soft Gauss
principle using LTL and the nominal C execution in MUJOCO
itself. In MUJOCO, we imposed 6D weld-type equality con-
straints for F or H and 3D connect-type equality constraints
for F3 and H3 respectively. We deactivated all other constraints
and frictional contacts (turned on by default in MUJOCO) to
ensure that it solves the same equality constrained dynamics
problems. The PV-s implementation is significantly faster than
all the other algorithms. It is nearly twice as fast as LTL-s and
nearly thrice as fast as LTL (which arguably solves harder
problem with hard motion constraints). It is unlikely that any
constrained dynamics algorithm, that we know of, can compete

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10
Soft gauss weights (exponent of 10)

10−10

10−8

10−6

10−4

10−2

100

C
on

st
ra

in
tr

es
id

ua
l(
m
s−

2
)

PV
PV-s
LTL-s
LTL
PV-e

(a) Constraint residuals for different soft Gauss weights.

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10
Soft gauss weights (exponent of 10)

10−8

10−6

10−4

10−2

100

102

104

q̈
∗

re
si

du
al

(r
ad
s−

2
)

PV-s
LTL-s
LTL
PV-e

(b) Residuals of q̈∗ w.r.t PV

Fig. 3: Benchmarking the numerical accuracy of soft Gauss
solver for different weights.

with PV-s since its computation cost is nearly the same as
that of the ABA algorithm (unconstrained forward dynamics
algorithm with O(n) complexity).

3) Accuracy of the proposed solvers: We benchmarked the
accuracy of the soft Gauss principle for different value of
weights in fig. 3. We present the whisker plots of ℓ2 norm
of the constraint residuals in fig. 3a and the ℓ2 norm of
the difference in q̈∗ computed by the PV solver (reference
algorithm because it considers hard motion constraints) in
fig. 3b for the Talos robot with 2H+2F constraint (both its
feet and hands are fixed with a full 6D constraint) at 1000
different randomly sampled joint configurations. PV, PV-e
and LTL that solve for hard equality constraints satisfy the
constraint to high level of accuracy, with PV-e appearing
to be numerically slightly stabler than the other two. Both
the soft Gauss solvers, PV-s and LTL-s, have a significantly
higher value of constraint residual, though the residual keeps
reducing as the penalty weights are increased. Both PV-s
and LTL-s satisfy the constraints equally well. However, for
weights higher than a certain point (∼ 108), the optimal joint
accelerations computed by the soft Gauss solvers and the hard
Gauss solvers begin to diverge due to numerical issues, where
the high penalty weights begin to affect the joint acceleration
solution in the nullspace of the constraints. Between the two
soft Gauss solvers, PV-s appears to be more numerically stable
than LTL-s.



101 102

Number of links in the chain

100

101

102

C
om

pu
ta

tio
n

tim
e

(m
ic

ro
se

co
nd

s)

PV-s
PV
Pin∗

Mu∗

PV-e
LTL-s
LTL

(a) Computational scaling for chains with fixed-base and 6D
constrained end effector.

(b) The ladder mechanism where m ∼ O(n).

10 20 30 40 50 60

Number of constraints

0

20

40

60

80

100

120

140

C
om

pu
ta

tio
n

tim
e

(m
ic

ro
se

co
nd

s)

Pv
Pv-e
LTL
PV-s
LTL-s

(c) Benchmarking computational scaling for the ladder mecha-
nism.

Fig. 4: Computational scaling of the different algorithms.

D. Computational scaling

We empirically tested the computational scaling of the
different constrained dynamics algorithms and present the
results in fig. 4. In fig. 4a, we show computational times of
the different algorithms for kinematic chains ranging from 6
to 100 revolute joints. The end-effectors are fixed with full
6D constraints. As expected, the O(n) complexity PV, PV-e
and PV-s solvers scale linearly and more gracefully than the
higher-order LTL and LTL-s algorithms used in PINOCCHIO
and MUJOCO respectively. Beyond a certain number of links,
the generated C-code for LTL and LTL-s became too large for
effective compiler optimization and they became slower than
even the nominal C++ execution in Pinocchio.

Then we compared the different algorithms on a highly
constrained ladder-shaped mechanism (see fig. 4b) with m ∼
O(n), with each rung consisting of 7 links. The segment

connecting two ends of a rung on one side has 3 links and
the other ends of the rung are constrained to be fixed with
full 6D constraints. The computational timings of different
algorithms as more rungs (and constraints) are added to the
mechanism are presented in fig. 4c. The PV solver with its
cubic complexity in the number of constraints also begins
to scale badly like the LTL and LTL-s solvers, while the
O(m+ n) solvers PV-e and PV-s scale linearly.

E. Discussion and limitations

Parallel algorithms: Our comparison was limited to imple-
mentations on a single core. However, the divide-and-conquer
algorithms [37]–[40] may be computationally faster, especially
for bigger mechanisms, when multiple cores are utilized. On
a single core however, they are unlikely to be faster for
typical robots since they are known to be several times more
expensive than ABA [38]. However, due to a lack of open
source implementation and due to the complexity of their
implementation, we leave this comparison for future work.

Among these divide-and-conquer methods the PV solver
appears to be most closely related to the DCAp algorithm
[38], which has outward acceleration propagation and inward
force propagation similarly to the PV solver and the ABA is
shown to be a special case of DCAp. It appears to be possible
to provide an alternative derivation of the PV solver from the
DCAp algorithm by placing a handle on the floating-base and
the constrained links. The handles on the constrained links
would be in the constraint space instead of the spatial handle
explicitly considered in [38]. Then, using the two-handle
equation in [38, sec. 4.1], for a specific order of assembly
from the leaf nodes to the root, it is possible to show that [38,
eq. 29a, 29g, 29b, 29h, 29d] correspond to eq. (42a), eq. (42b),
eq. (42c), eq. (42d) and eq. (42e) respectively. However, such
an assembly ordering is not the recommended ordering in
divide-and-conquer algorithms as it does not assemble two
trees of similar sizes which is necessary for obtaining a
reduced order complexity in the divide-and-conquer methods.

Though there is no direct analogue for the PV-early algo-
rithm in DCAp, a simpler form of early elimination can also be
performed in DCAp when the LA matrix reaches full rank by
eliminating the constraint forces by taking Schur complement.
Due the divide-and-conquer methods being among the most
complex rigid-body dynamics algorithms in literature, deriving
the PV solver this way may not be of interest to readers.
However, this connection opens up interesting possibilities for
parallelizing the algorithm, which we leave for future work.

Closed-loop solvers: The PV solver is closely related to
the algorithms in [33] and [34]. In the PV solver’s backward
recursion, the eq. (20c), eq. (20d) and eq. (20e) correspond to
[33, eq. 16c, eq. 18a and eq. 18b] respectively and [34, eq.
41c, eq.51b, eq.51a] respectively. Application-wise, the main
difference between PV-solver and [33], [34] is that we consider
known acceleration constraints (which includes all the loop
closure constraints with the ground as a special case), while
both [33], [34] tackle the harder problem of internal kinematic
loop constraints. We also explicitly consider floating-base
systems which was not considered in [33], while [34] does



consider floating-base systems in one of their examples though
not in the main derivation. Both [33] and [34] can be straight-
forwardly adapted to solve the constrained dynamics problems
considered by the PV solver. This connection between the
PV solver, [33] and [34] appears to not have been made in
existing literature. Despite not being a fundamentally new
algorithm, the expository PV solver derivation in section III
and section V is of value to the readers because it utilizes a
different LQR perspective that permitted a mechanistic deriva-
tion of the algorithms, that would make the material accessible
to researchers with control and optimization background. In
contrast, [33] required significant physical insight to come
up with an efficient propagation of Newton-Euler solutions
similarly to the ABA algorithm [16]. However, [33] approach
may be more accessible to researchers with a background in
mechanics and without prior experience in optimal control or
optimization.

O(n+m) solvers: Our expository derivation also allowed
us to easily derive two different and original (to the best
of our knowledge) O(n + m) solvers, using the soft Gauss
principle adopted by MUJOCO and early elimination of dual
variables. A form of early elimination is also proposed in
[33], [34], where they eliminate the dual variables of a loop
after passing over all the links in that loop. For certain robot
architectures where the loops are not heavily interconnected
(the same link being part of multiple loops), their early
elimination procedure leads to O(m+n) performance. Another
O(n+m) complexity solver for closed loops [35], also uses
zero-mass phantom links for loop-cutting and early elimination
at the loop level similarly to [33], but employs a Lagrange
multiplier-free formulation based on Kane’s equations [36] and
propagates additional inertia terms unlike [33], [34]. Despite
its interesting approach, [35] is fairly complex, lacks an open-
source implementation and is unclear if it is an improvement
over [33], [34] and comparing them for closed loops may be
an interesting future step. However, our early elimination is
fundamentally different from these methods as it reduces the
dimensionality of constraint equations at every joint.

The SVD currently proposed for PV-early is admittedly an
expensive algorithm for multi d.o.f joints, when we cannot
exploit the efficient rank-1 update formulae presented in
section VIII, unless the multi d.o.f joints are modelled as
several equivalent fictitious single d.o.f joints in a chain.
However, this workaround is non-ideal as it introduces issues
like representation singularity and non-physical meaning of
velocities of these fictitious joints. It may be worthwhile
to explore replacing the SVD with the more efficient rank-
revealing QR decomposition [45] in the future, which provides
the desired orthogonal bases similarly to the SVD.

OSIM and computational benchmarking: That the backward
recursion in PV solver, [34] and [33] provides an efficient
algorithm to compute the OSIM is a new connection made
in this paper that we could not find in literature. We are also
not aware of existing work that computationally benchmarked
the PV-solver or the [33], [34] algorithms with the currently
popular sparsity-exploiting methods of Featherstone for the
constrained dynamics problems considered in this paper. Our
findings indicate that for larger robots like the humanoid

robots the sparsity-exploiting methods are not competitive
with the PV solver, which has implications for the existing
simulators and as well as for biomechanical applications where
the degrees of freedom are typically over 100.

Our benchmarking methodology included code-generating
and compiling robot-specific C code, which while contributing
to the speeds we observe, is also a limitation as we need
to know all the possible contact situations that may arise.
Nominal C++ implementations such as in PINOCCHIO can
deal with these scenarios more effectively as they do not
require re-compilation at runtime. However, in many applica-
tions e.g. humanoid walking, all the possible contact scenarios
can be compiled in advance and loaded depending on the
contact scenario using look-up tables. In any case, the speed-
up we observed due to code-generation is high enough that
it is interesting for simulators to explore a hybrid method
combining the strengths of both code-generation and nominal
C++ execution for different parts of the algorithm.

Finally, we refer interested readers to several extensions
of the unconstrained LQR algorithm to equality-constrained
problems [62]–[65] in a control setting. Out of these methods
[62] is analogous to the original PV solver and [64]’s method
is most similar to our PV-early solver, where they also used
SVD.

X. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We provided a self-contained derivation of several advanced
CDAs from the first principles by connecting it to the LQR
problem. Our derivation, building upon Vereshchagin’s ap-
proach, is much simpler than the better known SOA framework
of Rodriguez [20] that uses this LQR connection. Our exposi-
tory derivation extended the original PV solver to floating-base
kinematic trees, which resulted in an algorithm closely related
to [34] and [33], but is derived using a different LQR per-
spective. This paper makes constrained dynamics accessible to
researchers in optimization and control as well as roboticists,
with knowledge of control, that currently treat robot dynamics
as a black-box and are therefore unable to debug or adapt
existing dynamics software to their applications. The LQR
connection can foster transfer of software and ideas between
fields in the future. For example, recent research from data-
driven LQR control may transfer to robust control of robots
with uncertain dynamics. The optimization perspective in our
derivation is valuable as accounting for uncertainty in parame-
ters is performed naturally in an optimization framework [66],
[67].

The equality we showed between LQR’s dual Hessian
and the inverse OSIM provided an efficient state-of-the-art
OSIM algorithm, which we further significantly accelerated
for specific, but common, robot structures that have branching
at the base. The LQR-based approach allowed straightforward
derivation for the PV-s and PV-early algorithms, resulting
in two original algorithms with O(n + m) complexity. Our
numerical experiments suggest that the PV solver is com-
putationally superior to currently popular higher-order sparse
factorization algorithms by Featherstone for larger robots like



the humanoid robot Atlas, for which the LTL needs up to 2x
more computations than the PV-solver. This PV-solver speed-
up can be arbitrarily higher for longer mechanisms, typical
in biomechanical applications, due to the inherent complexity
difference. Finally, our work recognizes the historical contribu-
tion of Popov and Vereshchagin who proposed the first O(n)
CDA, which remarkably remains the state-of-the-art nearly
fifty years after its invention and yet remains largely unknown
in the robotics community.

B. Future work

There are multiple exciting directions for future work,
apart from the applications in robot control and trajectory
optimization. The algorithms presented here are limited to
equality constraints, and it is a natural research direction to
extend the algorithms to include internal kinematic loops,
frictional contacts and unilateral contact constraints. We will
also explore proximal point iterations [6] for applying the
solver to problems with ill-conditioned and nearly redundant
constraints. Analytical gradients, which are found to be faster
than automatic differentiation, can also be developed for the
PV solver for optimal control and reinforcement learning
applications. In particular, transfer of new research results
from data-driven LQR to robot control is an exciting future
research direction.

ACKNOWLEDGEMENT

We thank Prof. J. Swevers, B. Vandewal and A. Vigoya
for valuable feedback on previous manuscript versions and
the anonymous reviewers for their valuable comments and
suggestions, especially the reviewer 1 for an extensive review
and suggesting important missing references (e.g. [33]).

REFERENCES

[1] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.
[2] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control:

theory, computation, and design. Nob Hill Publishing Madison, 2017,
vol. 2.

[3] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” Int. J. Robot. Res., vol. 33,
no. 1, pp. 69–81, 2014.

[4] M. Neunert, F. Farshidian, A. W. Winkler, and J. Buchli, “Trajec-
tory optimization through contacts and automatic gait discovery for
quadrupeds,” IEEE Robot. Autom. Lett., vol. 2, no. 3, pp. 1502–1509,
2017.

[5] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” http://pybullet.org,
2016–2021.

[6] J. Carpentier, R. Budhiraja, and N. Mansard, “Proximal and sparse
resolution of constrained dynamic equations,” in Proc. Robot., Sci. Syst.,
2021.

[7] E. Todorov, “Convex and analytically-invertible dynamics with contacts
and constraints: Theory and implementation in mujoco,” in Proc. IEEE
Int. Conf. Robot. Autom., 2014, pp. 6054–6061.

[8] J. Lee et al., “DART: Dynamic animation and robotics toolkit,” J. Open
Source Softw., vol. 3, no. 22, p. 500, Feb 2018.

[9] B. Plancher, S. M. Neuman, R. Ghosal, S. Kuindersma, and V. J. Reddi,
“Grid: Gpu-accelerated rigid body dynamics with analytical gradients,”
in Proc. IEEE Int. Conf. Robot. Autom., 2022, pp. 6253–6260.

[10] D. Baraff, “Linear-time dynamics using lagrange multipliers,” in Proc.
ACM SIGGRAPH ’96, 1996, pp. 137–146.

[11] R. M. Murray, Z. Li, and S. S. Sastry, A mathematical introduction to
robotic manipulation. CRC press, 2017.

[12] K. M. Lynch and F. C. Park, Modern robotics. C.U.P, 2017.

[13] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in Proc. IEEE Int. Conf. Robot. Autom., 2014,
pp. 1168–1175.

[14] A. Mesbah et al., “Fusion of machine learning and mpc under uncer-
tainty: What advances are on the horizon?” in 2022 American Control
Conference (ACC), 2022, pp. 342–357.

[15] A. Vereshchagin, “Computer simulation of the dynamics of complicated
mechanisms of robot-manipulators,” Eng. Cybernet., vol. 12, pp. 65–70,
1974.

[16] R. Featherstone, “The calculation of robot dynamics using articulated-
body inertias,” Int. J. Robot. Res., vol. 2, no. 1, pp. 13–30, 1983.

[17] R. Featherstone and D. Orin, “Robot dynamics: equations and algo-
rithms,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 1, 2000, pp. 826–
834.

[18] C. F. Gauß, “Über ein neues allgemeines grundgesetz der mechanik.”
1829.

[19] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp.
34–37, 1966.

[20] G. Rodriguez, “Kalman filtering, smoothing, and recursive robot arm
forward and inverse dynamics,” IEEE J. Robot. Automat., vol. 3, no. 6,
pp. 624–639, 1987.

[21] G. Rodriguez, A. Jain, and K. Kreutz-Delgado, “A spatial operator
algebra for manipulator modeling and control,” Int. J. Robot. Res.,
vol. 10, no. 4, pp. 371–381, 1991.

[22] G. Rodriguez and K. Kreutz-Delgado, “Spatial operator factorization and
inversion of the manipulator mass matrix,” IEEE trans. robot. autom,
vol. 8, no. 1, pp. 65–76, 1992.

[23] J. P. Popov, A. F. Vereshchagin, and S. L. Zenkevič, Manipuljacionnyje
roboty: Dinamika i algoritmy. Nauka, 1978.

[24] A. F. Vereshchagin, “Modeling and control of motion of manipulational
robots,” Soviet Journal of Computer and Systems Sciences, vol. 27, no. 5,
pp. 29–38, 1989.

[25] A. Shakhimardanov, “Composable robot motion stack: Implementing
constrained hybrid dynamics using semantic models of kinematic
chains,” Leuven, 2015. [Online]. Available: https://lirias.kuleuven.be/
1747300?limo=0

[26] S. Schneider and H. Bruyninckx, “Exploiting linearity in dynamics
solvers for the design of composable robotic manipulation architectures,”
in Proc. IEEE/RSJ Int. Conf. Int. Robots. Syst., 2019, pp. 7439–7446.

[27] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational-space formulation,” IEEE J. Robot. Au-
tomat., vol. 3, no. 1, pp. 43–53, 1987.

[28] K. Kreutz-Delgado, A. Jain, and G. Rodriguez, “Recursive formulation
of operational-space control,” Int. J. Robot. Res., vol. 11, no. 4, pp.
320–328, 1992.

[29] G. Rodriguez, A. Jain, and K. Kreutz, “Spatial operator algebra frame-
work for multibody system dynamics,” in Proceedings of the 3rd Annual
Conference on Aerospace Computational Control, Volume 1, 1989.

[30] K.-S. Chang and O. Khatib, “Efficient recursive algorithm for the
operational space inertia matrix of branching mechanisms,” Advanced
Robotics, vol. 14, no. 8, pp. 703–715, 2001.

[31] P. Wensing, R. Featherstone, and D. E. Orin, “A reduced-order recursive
algorithm for the computation of the operational-space inertia matrix,”
in Proc. IEEE Int. Conf. Robot. Autom., 2012, pp. 4911–4917.

[32] R. Featherstone, “Exploiting sparsity in operational-space dynamics,”
Int. J. Robot. Res., vol. 29, no. 10, pp. 1353–1368, 2010.

[33] M. Otter, H. Brandl, and R. Johanni, “An algorithm for the simulation
of multibody systems with kinematic loops,” in Proceedings of the 7th
World Congress on Theory of Machines and Mechanisms, Sevilla, 1987.

[34] D.-S. Bae and E. J. Haug, “A recursive formulation for constrained
mechanical system dynamics: Part ii. closed loop systems,” Journal of
Structural Mechanics, vol. 15, no. 4, pp. 481–506, 1987.

[35] K. S. Anderson and J. Critchley, “Improved order-n performance al-
gorithm for the simulation of constrained multi-rigid-body dynamic
systems,” Multibody system dynamics, vol. 9, pp. 185–212, 2003.

[36] T. R. Kane and D. A. Levinson, Dynamics, theory and applications.
McGraw Hill, 1985.

[37] R. Featherstone, “A divide-and-conquer articulated-body algorithm for
parallel o (log (n)) calculation of rigid-body dynamics. part 1: Basic
algorithm,” Int. J. Robot. Res., vol. 18, no. 9, pp. 867–875, 1999.

[38] ——, “A divide-and-conquer articulated-body algorithm for parallel o
(log (n)) calculation of rigid-body dynamics. part 2: Trees, loops, and
accuracy,” Int. J. Robot. Res., vol. 18, no. 9, pp. 876–892, 1999.

[39] K. Yamane and Y. Nakamura, “Comparative study on serial and parallel
forward dynamics algorithms for kinematic chains,” Int. J. Robot. Res.,
vol. 28, no. 5, pp. 622–629, 2009.

http://pybullet.org
https://lirias.kuleuven.be/1747300?limo=0
https://lirias.kuleuven.be/1747300?limo=0


[40] K. D. Bhalerao, J. Critchley, and K. Anderson, “An efficient parallel
dynamics algorithm for simulation of large articulated robotic systems,”
Mechanism and Machine Theory, vol. 53, pp. 86–98, 2012.

[41] K. D. Bhalerao, J. Critchley, D. Oetomo, R. Featherstone, and O. Khatib,
“Distributed operational space formulation of serial manipulators,” Jour-
nal of Computational and Nonlinear Dynamics, vol. 9, no. 2, 2014.

[42] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in Proc. IEEE/RSJ Int. Conf. Int. Robots. Syst., 2012, pp.
5026–5033.

[43] R. Featherstone, “Efficient factorization of the joint-space inertia matrix
for branched kinematic trees,” Int. J. Robot. Res., vol. 24, no. 6, pp.
487–500, 2005.

[44] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” Int. J.
Robot. Res., vol. 33, no. 7, pp. 1006–1028, 2014.

[45] G. H. Golub and C. F. Van Loan, Matrix computations. JHU press,
2013.

[46] F. E. Udwadia and R. E. Kalaba, Analytical dynamics : a new approach.
C.U.P, 1996.

[47] H. Bruyninckx and O. Khatib, “Gauss’ principle and the dynamics
of redundant and constrained manipulators,” in Proc. IEEE Int. Conf.
Robot. Autom., vol. 3, 2000, pp. 2563–2568.

[48] H. Brandl, R. Johanni, and M. Otter, “A very efficient algorithm for the
simulation of robots and similar multibody systems without inversion
of the mass matrix,” IFAC Proceedings Volumes, vol. 19, no. 14, pp.
95–100, 1986.

[49] K. W. Lilly, Efficient dynamic simulation of multiple chain robotic
systems. The Ohio State University, 1989.

[50] S. Lucia, T. Finkler, and S. Engell, “Multi-stage nonlinear model
predictive control applied to a semi-batch polymerization reactor under
uncertainty,” J. Process Control, vol. 23, no. 9, pp. 1306–1319, 2013.

[51] G. Frison, D. Kouzoupis, M. Diehl, and J. B. Jørgensen, “A high-
performance riccati based solver for tree-structured quadratic programs,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 14 399–14 405, 2017.

[52] M. W. Walker and D. E. Orin, “Efficient dynamic computer simulation
of robotic mechanisms,” 1982.

[53] L. Righetti, J. Buchli, M. Mistry, M. Kalakrishnan, and S. Schaal,
“Optimal distribution of contact forces with inverse-dynamics control,”
Int. J. Robot. Res., vol. 32, no. 3, pp. 280–298, 2013.

[54] A. Dietrich, C. Ott, and A. Albu-Schäffer, “An overview of null space
projections for redundant, torque-controlled robots,” Int. J. Robot. Res.,
vol. 34, no. 11, pp. 1385–1400, 2015.

[55] J. Hwangbo, J. Lee, and M. Hutter, “Per-contact iteration method for
solving contact dynamics,” IEEE Robot. Autom. Lett., vol. 3, no. 2, pp.
895–902, 2018. [Online]. Available: www.raisim.com

[56] J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix
corresponding to a change in one element of a given matrix,” The Annals
of Mathematical Statistics, vol. 21, no. 1, pp. 124–127, 1950.

[57] R. Featherstone, “Spatial v2,” 2015. [Online]. Available: http:
//royfeatherstone.org/spatial/v2/index.html

[58] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“Casadi: a software framework for nonlinear optimization and optimal
control,” Math. Program. Comput., vol. 11, no. 1, pp. 1–36, 2019.

[59] S. McMillan and D. E. Orin, “Efficient computation of articulated-body
inertias using successive axial screws,” IEEE trans. robot. autom, vol. 11,
no. 4, pp. 606–611, 1995.

[60] J. Baumgarte, “Stabilization of constraints and integrals of motion in
dynamical systems,” Comput. Meth. Appl. Mech. Eng., vol. 1, no. 1, pp.
1–16, 1972.

[61] J. Carpentier et al., “The pinocchio c++ library: A fast and flexible
implementation of rigid body dynamics algorithms and their analytical
derivatives,” in Proc. IEEE Int. Symp. Syst. Integr., 2019, pp. 614–619.

[62] J. H. Park, S. Han, and W. H. Kwon, “Lq tracking controls with
fixed terminal states and their application to receding horizon controls,”
Systems & Control Letters, vol. 57, no. 9, pp. 772–777, 2008.

[63] M. Giftthaler and J. Buchli, “A projection approach to equality con-
strained iterative linear quadratic optimal control,” in Proc. IEEE Int.
Conf. Hum. Robot., 2017, pp. 61–66.

[64] F. Laine and C. Tomlin, “Efficient computation of feedback control for
equality-constrained lqr,” in Proc. IEEE Int. Conf. Robot. Autom., 2019,
pp. 6748–6754.

[65] L. Vanroye, J. De Schutter, and W. Decré, “A generalization of the riccati
recursion for equality-constrained linear quadratic optimal control,”
arXiv preprint arXiv:2302.14836, 2023.

[66] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust optimization.
Princeton university press, 2009, vol. 28.

[67] A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on stochastic
programming: modeling and theory. SIAM, 2021.

Ajay Sathya obtained his Bachelors de-
gree from NITK Surathkal, India in 2016 and
Masters and PhD degrees from KU Leuven,
Belgium in 2018 and 2023 respectively. His
research interests include developing efficient
dynamics simulators and high performance
robot controllers.

Dr. Bruyninckx (Personal webpage) ob-
tained the Masters degrees in Mathematics (Li-
centiate, 1984), Computer Science (Burgerlijk
Ingenieur, 1987) and Mechatronics (1988), all
from the KU Leuven, Belgium. In 1995 he
obtained his Doctoral Degree in Engineering
from the same university. He is full-time Full
Professor at the KU Leuven, and partime at
the Eindhoven University of Technology. The
research focus in both places is on the com-
posability of the most advanced, knowledge
driven algorithms for the dynamics of motion

control of complex robotics applications, with distributed sensor
processing and resource monitoring. The complementary objectives
are to realise such systems with the least amount of resource costs,
with “good enough” quality, and with full “explainability”.

Wilm Decré (Member, IEEE) received the
B.S., M.S., and the Ph.D. degrees in Mechan-
ical Engineering from KU Leuven, Belgium
in 2004, 2006, and 2011, respectively. He
is a research manager at the Department of
Mechanical Engineering of KU Leuven, Bel-
gium. His research interests include sensor-
and optimization-based control of robot sys-
tems, numerical optimization algorithms and
applications, learning and optimal control and

estimation, and real-time and embedded software design.

After an academic career at the KU Leu-
ven Department of Mechanical Engineering,
Goele Pipeleers moved to Materialise N.V.,
where she currently focusses on innovations
in additive manufacturing.

www.raisim.com
http://royfeatherstone.org/spatial/v2/index.html
http://royfeatherstone.org/spatial/v2/index.html
https://u0011821.pages.mech.kuleuven.be/

	Introduction
	Related work
	Contributions
	Expository derivation of the original PV solver and extensions
	Connections to the OSIM
	O(n + m) algorithms
	Benchmarking

	Organization

	Background
	Notation and Convention
	Preliminaries
	Featherstone's LTL algorithms
	Forward kinematics
	Gauss' Principle
	Dynamic Programming Principle

	Derivation of the constrained dynamics solver
	Problem formulation
	Dynamic programming solution
	Details on fi
	Including the effect of gravity


	Physical interpretation
	Extension to trees with floating-base
	Problem formulation
	Dynamic programming solution
	Algorithm
	Computational complexity


	Soft Gauss' principle
	Computational complexity

	O(n) algorithm for OSIM
	The PV-OSIM algorithm
	The PV-OSIM-fast for floating-base robots
	Computational complexity of PV-OSIM-fast

	Comparison with existing O(n) OSIM algorithms

	Early multiplier resolution
	Experiments and Discussion
	Implementation
	Benchmarking the OSIM algorithms
	Benchmarking CDAs
	Hard motion constraints
	Soft constraints
	Accuracy of the proposed solvers

	Computational scaling
	Discussion and limitations

	CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future work

	References

