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Abstract This chapter develops an approach for achieving fast whole-body optimal
control incorporating exact Lagrangian Hessian information. To this end, we con-
cisely derive the three key state-of-the-art algorithmic ingredients of our approach,
namely, 1) a linear solver exploiting the optimal control problem (OCP) structure, 2)
a constrained forward dynamics algorithm, and 3) efficient differentiation of the OCP
up to second order. The OCP’s linear solver and the constrained dynamics algorithm
are derived in a unified manner since they are both based on Riccati recursion. For
OCP differentiation, we combine the adjoint method and automatic differentiation
(AD) to obtain significant efficiency improvements compared to vanilla AD. Our
approach’s potential is demonstrated on a trajectory optimization problem of a seven
DoF Kuka LBR iiwa robot arm with full-order dynamics and a horizon length of 50,
where we achieve 0.5 ms per OCP iteration with exact Lagrangian Hessian compared
to 0.3 ms for Gauss-Newton approximation. Fewer OCP iterations for the exact Hes-
sian approach result in overall faster computation time, challenging the conventional
wisdom that exact Hessian methods are prohibitively expensive for fast OCP solvers.

1 Introduction

Trajectory optimization (TO) is a well-established technique to generate high perfor-
mance and collision-free robot motions [1], and is formulated naturally as an optimal
control problem (OCP) [2, 3]. The system limits and obstacles are formulated as the
OCP’s constraints, while a desired performance criterion is optimized over the OCP
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horizon. Common performance criteria include desired motion execution time, the
energy consumed, actuator effort or a trade-off between these terms [4]. In particu-
lar, solving minimum-time problems can generate highly dynamic robot behaviors
while still satisfying the system constraints. The most widespread approach to solv-
ing OCPs employs the so-called direct methods, which discretize the problem in the
time domain, using shooting [5, 2] or collocation methods [6, 7], to obtain a finite-
dimensional optimization problem, that can be solved using conventional nonlinear
programming (NLP) techniques [8].

The computational cost of robot TO depends to a great extent on the fidelity of
the kinematics and dynamics model considered. At the kinematics level, the sim-
plest approximation would be to perform only end-effector TO and later track this
motion using an inverse kinematics controller. However, this precludes imposing im-
portant joint limit constraints and whole-body obstacle avoidance constraints. Due
to kinematics computation being relatively inexpensive, modern approaches com-
monly use the full kinematics model. Typical approximations at the dynamics level
are 1) ignoring dynamics, 2) Center-of-Mass (CoM) approaches treating the robot
as a point-mass without angular momentum, and 3) centroidal dynamics accounting
for angular momentum, but still considering the robot as a single rigid body. Due
to the high computational cost of full-order dynamics, a combination of centroidal
dynamics with full kinematics model is a currently popular robot TO approach.
However, the centroidal dynamics approach does not support imposing torque limits
and assumes that desired contact forces can be achieved. Therefore, this approach
can require extensive tuning and good initial guesses to generate feasible motions
when performing close to system limits. Whole-body TO overcomes these draw-
backs by considering the full-order kinematics and dynamics models, which permits
the highest expressivity in formulating costs and constraints among the existing TO
approaches.

However, the major challenge with whole-body TO is its computational cost.
Therefore, whole-body TO is typically limited to generating reference trajectories
in an offline manner and for known environments. Fast TO can enable a robot to
generate dynamic motions online using the latest sensor measurements, allowing it
to respond to environmental changes. Speeding up TO requires accelerating its most
computationally intensive subproblems, which are, the OCP solver and evaluation of
the robot dynamics and its derivatives. The cost of these operations scale cubically
with the number of robot’s degrees of freedom (DoF) [9], making it especially
expensive for humanoids and quadrupeds. To avoid the additional computational
cost incurred by computing second-order derivatives, whole-body TO approaches
typically restrict themselves to Gauss-Newton Hessian approximations [10], though
incorporating exact Lagrangian Hessian may benefit convergence.

Several advancements have been made towards speeding up OCP solvers, which
include both algorithmic improvements [11, 12, 13, 14] and high-performance soft-
ware implementations [15, 16, 17, 18]. In this chapter, we focus on the algorithmic
aspects and derive state-of-the-art algorithms for the OCP’s linear solver, computing
robot dynamics and computing the OCP’s derivatives up to second order and show
that these developments lead to an overall speed-up of second-order and whole-body
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TO. A concise treatment of this wide gamut of topics in a single chapter is made pos-
sible, by both the OCP’s linear solver and the robot dynamics algorithm being based
on a common framework of Riccati recursion, and the derivative computation lever-
aging a simple combination of the adjoint method [19] and automatic differentiation
(AD).

1.1 Organization and contributions

In the remainder of this introduction section, we present a brief survey of relevant lit-
erature. The next section on preliminaries presents the notation, formalizes the OCP,
and introduces robot dynamics problems and the adjoint method for differentiation.
Section 3 presents a generalized Riccati recursion algorithm [12] for an equality
constrained linear quadratic regulator (LQR) problem. This algorithm is the inner
linear solver of the nonlinear OCP solver Fatrop [16] presented in in Section 4.
The same Riccati recursion is used to derive a state-of-the-art constrained dynam-
ics algorithm (CDA) [14] in Section 5 before discussing efficient differentiation in
Section 6. Section 7 presents computational benchmarking results before discussion
and concluding remarks in Sections 8 and 9 respectively.

This chapter aims to provide a concise derivation of the state-of-the-art algo-
rithms comprising our approach to solving whole-body OCPs with exact Lagrangian
Hessian information. Therefore, an exhaustive survey of this active field, where new
solvers and software continue to be developed, remains out of its scope. Notwith-
standing, this chapter’s contents capture key algorithmic aspects of existing efficient
OCP solvers and can aid readers in understanding the existing literature. In addition
to this tutorial nature, the chapter contains novel aspects enumerated below.

1. Extends the adjoint method to compute the terms due to dynamics in OCP
Lagrangian’s Hessian. This approach provides a simpler derivation for the state-
of-the-art algorithm proposed in [9], where each derivative term was manually
derived using tensors. Our approach is also more general and readily supports
additional costs and constraints on robot accelerations and constraint forces.

2. An alternate dynamic programming [20] (DP) based derivation is provided for
the generalized Riccati recursion in [12], that might be more intuitive than the
linear algebra based derivation of [12] some readers.

3. Our algorithms and their efficient implementation enable a computational cost
of about 500 𝜇s per OCP solver iteration for solving a point-to-point robot arm
motion task with an exact Hessian method, full dynamics model and 50 nodes in
the horizon. This is significantly faster than existing approaches [21], to the best
of our knowledge.

The C++ Fatrop library1 and a and a MATLAB implementation of the con-
strained dynamics algorithm2 are open-sourced and made available. The code for

1 https://github.com/meco-group/fatrop
2 https://github.com/AjSat/spatial_V2
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the adjoint method and the benchmark examples of Sec. 7 is also made publicly
availabe3.
Connection between subsequent sections: A whole-body TO problem is modelled
as a nonlinear OCP using the CDA from Sec. 5 for the OCP dynamics. This CDA is
a special case of our LQR solver introduced in Sec. 3. The OCP is solved using the
nonlinear interior point method from Sec. 4 and requires the constraint Jacobian and
Lagrangian derivatives up to second-order, which are evaluated using the adjoint
method presented in Sec. 2.4. Each barrier sub-problem of the interior point method
is solved using LQR solver from Sec. 3.

1.2 Existing work

Optimal control problem solvers: OCPs can be solved using mature off-the-shelf
NLP solvers [8] like IPOPT [22] or SNOPT [23], which solve the NLP using New-
ton iterations. These iterations solve a large sparse linear system resulting from the
OCP’s KKT conditions [8] using general purpose sparse linear algebra backends,
which being general purpose, do not exploit OCP’s Markovian structure. Eventually,
structure-exploiting algorithms like iterative LQR (iLQR) [24] or differential dy-
namic programming (DDP) based on Riccati recursion were reported to provide at
least an order-of-magnitude speed-up compared to the general purpose solvers. This
speed-up is facilitated by Riccati recursion performing matrix operations on small
(< 100 rows and columns) blocks, which fit in a modern CPU’s cache. Exploiting this
idea, the BLASFEO [25] library was developed to accelerate linear algebra for small
matrices on widely-used CPU architectures with a tailored implementation. The field
has seen extensive activity in recent years, with the early successors of the vanilla
iLQR/DDP methods proposed in OCS [26], Altro [27] or Croccodyl [28] tool-
boxes. The Acados [15] library is an especially efficient software (due to BLASFEO
linear algebra backend), that uses the sequential quadratic programming (SQP) [8]
method and real-time iteration scheme [29] to target MPC applications. Recent
works like OCS2 [30], Fatrop [16], Katayama’s solver [31], ProxDDP [10], MIM
solver [32] have attempted adding to structure exploiting solvers the capability to
systematically support stage-wise equality/inequality constraints and advanced glob-
alization techniques to bring reliability of the fast OCP solvers closer to the mature
off-the-shelf NLP solvers.

This chapter reviews our state-of-the-art fast OCP solver Fatrop [16], whose
nonlinear interior-point method and advanced globalization techniques closely mir-
rors that of IPOPT. At Fatrop’s core is the generalized Riccati recursion algo-
rithm [12] (derived in Sec.3), which by supporting stage-wise state-input mixed
equality/inequality constraints and terminal state constraints and making few regu-
larity assumptions, is more general than most existing structure-exploiting solvers.
Robot dynamics algorithms:

3 https://github.com/meco-group/adjoint_method
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A robot’s motion can be unconstrained (not counting the joint constraints) or
constrained due to environmental contacts, e.g., when a robot arm is contouring
a surface. For unconstrained dynamics problems, the articulated body algorithm
(ABA) [33, 34, 35] is asymptotically the most efficient algorithm with a worst-case
computational complexity of𝑂 (𝑛) for kinematic trees, where 𝑛 is the robot’s degrees
of freedom (DOFs). For constrained dynamics problems, the most widely used
algorithms in simulators are Featherstone’s sparsity-exploiting LTL algorithms [36,
37], which have an expensive worst-case computational complexity of𝑂 (𝑛𝑑2+𝑑2𝑚+
𝑚2𝑑 + 𝑚3), where 𝑑 is the kinematic tree depth and 𝑚 is constraint dimensionality.
However, there exist older, but sparsely used constrained dynamics algorithms [38,
39, 40], that are asymptotically more efficient than the LTL algorithms, with a
worst-case computational complexity of 𝑂 (𝑛 + 𝑚2𝑑 + 𝑚3). Our recent paper [14]
revisited these old algorithms from an LQR perspective and proposed a state-of-
the-art constrained dynamics algorithm (CDA) called the PV-early algorithm, with
a computational complexity of 𝑂 (𝑛 + 𝑚). We will show that a special case of the
Riccati recursion algorithm derived in this chapter yields a state-of-the-art𝑂 (𝑛+𝑚)
complexity constrained dynamics algorithm.

Constrained dynamics is a complex problem on its own, especially with inequality
or frictional contact constraints, which are mathematically modeled as a nonlinear
complementarity problem. A detailed overview on this topic is provided in [41].
This chapter restricts itself to the simpler equality-constrained dynamics problems.
Differentiation of constraints and objectives:

Differentiating dynamics functions is easily the most computationally demanding
operation in an OCP solver, especially for larger robots, and needs to be computed
efficiently. Automatic differentiation (AD) tools like CasADi [17], CppAD [42] and
Julia’s Autodiff are widely used since they are significantly more efficient and
numerically accurate than black-box methods like finite differences. However, these
AD tools do not optimally deal with the SO(3)manifold while differentiating through
the rotation matrices. Tackling this issue and using the implicit function method was
shown [13] to considerably speed-up differentiating dynamics functions. This result
was extended to constrained dynamics settings with an efficient implementation
available in the widely-used Pinocchio [18] library.

Most existing fast whole-body OCP solvers [28, 10, 32] restrict themselves to
first-order derivatives and Gauss-Newton Hessian approximation because comput-
ing second-order dynamics derivatives [43] (resulting in 3D tensors) is prohibitively
expensive. However, OCP solvers only need to compute the Lagrangian Hessian
(a 2D matrix), which is significantly cheaper to compute. This insight was com-
bined with the implicit function approach [13] to efficiently compute the Lagrangian
Hessian terms due to unconstrained forward dynamics in [44] and later extended
to constrained dynamics in [9]. Their exact Hessian approach [44, 45] empirically
demonstrated faster convergence compared to the approximate Hessian methods.
Adopting similar strategy, this chapter leverages the adjoint method [19] to compute
first and second-order derivatives. Our resulting derivation is simpler and arguably
more elegant than [9], where the authors hand-derived each partial derivative term
and is also more general as we will see in the Sections 2.4 and 6.
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2 Preliminaries

In this section, we review notation, formalize OCP, dynamics problems and introduce
the adjoint method.

2.1 Notation

Lower-case symbols, lower-case bold-faced symbols and upper-case symbols rep-
resent scalars, vectors and matrices respectively. R𝑛 and R𝑛×𝑚 are the set of 𝑛-
dimensional real-valued vectors and 𝑛 ×𝑚 real-valued matrices respectively. S𝑛, S𝑛+
and S𝑛++ represent the set of 𝑛×𝑛 symmetric matrices, positive semi-definite matrices
and positive definite matrices respectively. 𝐴𝑇 represents transpose of the matrix 𝐴.
𝐼𝑛 refers to an identity matrix of size 𝑛 × 𝑛. A matrix of size 𝑚 × 𝑛 of zeros or
ones is represented by 0𝑚×𝑛 and 1𝑚×𝑛 respectively. 𝜕𝑦

𝜕𝑥
is the partial derivative of a

function 𝑦 w.r.t. 𝑥. 𝑑𝑦
𝑑𝑥

represents the total derivative of 𝑦 w.r.t. 𝑥. For a vector-valued

function y(x), the gradient ∇xy =
𝑑y
𝑑x
𝑇

. Let 𝒒 ∈ Q denote a robot configuration,
where Q is the configuration space, 𝝂 ∈ T𝒒Q ≃ R𝑛 denote the generalized robot
velocities, ¤𝝂 denote the generalized robot accelerations and 𝝉 ∈ T ∗𝒒 Q ≃ R𝑛 denote
the generalized robot forces.

2.2 OCP formulation

This chapter considers discrete-time OCP formulations of the form

minimize
x,u

𝐾−1∑︁
𝑘=0
{𝑙𝑘 (x𝑘 , u𝑘)} + 𝑙𝐾 (x𝐾 ), (1a)

subject to x𝑘+1 = f𝑑,𝑘 (x𝑘 , u𝑘), 𝑘 = 0, 1, . . . , 𝐾 − 1, (1b)
g𝑠,𝑘 (x𝑘 , u𝑘) ≤ 0, h𝑠,𝑘 (x𝑘 , u𝑘) = 0, 𝑘 = 0, 1, . . . , 𝐾 − 1, (1c)
g𝑒 (x𝐾 ) ≤ 0, h𝑒 (x𝐾 ) = 0, (1d)

where x𝑘 ∈ R𝑛𝑥 and u𝑘 ∈ R𝑛𝑢 are the state and control variables at time-step
𝑘 respectively, 𝐾 is the horizon length, 𝑙𝑘 : R𝑛𝑥×𝑛𝑢 ↦→ R and 𝑙𝐾 : R𝑛𝑥 ↦→ R
are the stage-wise and terminal cost functions respectively, f𝑑,𝑘 : R𝑛𝑥×𝑛𝑢 ↦→ R𝑛𝑥
is the discretized dynamics function at time-step 𝑘 , g𝑠,𝑘 : R𝑛𝑥×𝑛𝑢 ↦→ R𝑛𝑔,𝑘 and
g𝑒 : R𝑛𝑥 ↦→ R𝑛𝑔,𝐾 are the stage and terminal inequality constraint functions respec-
tively. Analogously, h𝑠,𝑘 : R𝑛𝑥×𝑛𝑢 ↦→ R𝑛ℎ,𝑘 and h𝑒 : R𝑛𝑥 ↦→ R𝑛ℎ,𝐾 are the stage
and terminal equality constraint functions respectively. All the functions above are
assumed to be twice continuously differentiable.
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2.3 Robot dynamics algorithms

Robot dynamics problems are broadly classified as inverse dynamics (ID) or forward
dynamics (FD) problems, which can further be unconstrained or constrained.
Unconstrained dynamics is formulated by the Euler-Lagrange equations

𝑀 (𝒒) ¤𝝂 + c(𝒒, 𝝂) = 𝝉, (2)

where 𝑀 ∈ S𝑛++ is the joint-space inertia matrix (JSIM) and c ∈ R𝑛 is the generalized
force vector due to gravity, centripetal, and centrifugal effects.

Formally, an unconstrained ID problem is the mapping ID(𝒒, 𝝂, ¤𝝂) ↦→ 𝝉, that
can be solved by simply evaluating the left-hand-side of Eq. (2). 𝑀 and c can
be efficiently computed using the composite rigid body algorithm (CRBA) [46]
algorithm. However, the recursive Newton-Euler algorithm (RNEA) [35] is the most
efficient unconstrained ID algorithm with an𝑂 (𝑛) computational complexity. RNEA
avoids explicitly computing 𝑀 , which requires at least 𝑂 (𝑛2) operations.

Formally, unconstrained FD problem is the mapping FD(𝒒, 𝝂, 𝝉) ↦→ ¤𝝂, that solves
the linear system in Eq. (2) for ¤𝝂. Naively factorizing 𝑀 requires 𝑂 (𝑛3) operations.
However, for tree-structured robots, the LTL algorithm [36] exploits the branching-
induced sparsity in 𝑀 to compute its Cholesky factorization with a reduced 𝑂 (𝑛𝑑2)
complexity, where 𝑑 is the tree depth. The fastest unconstrained FD algorithm is the
recursive articulated body algorithm (ABA) [33, 34, 47], with a 𝑂 (𝑛) complexity,
which, similarly to RNEA, avoids explicitly computing the JSIM.
Constrained dynamics problems, that are required to satisfy the equality constraint

f𝑐 (𝒒, 𝝂) = 0𝑚,

are formulated at the acceleration level with the following two equations

𝑀 (𝒒) ¤𝝂 + c(𝒒, 𝝂) + 𝐽𝑇𝝀 = 𝝉, (3a)
𝐽 (𝒒) ¤𝝂 + ¤𝐽 (𝒒, 𝝂)𝝂 = a∗𝑐, (3b)

where 𝐽 ∈ R𝑚×𝑛 is the constraint Jacobian, 𝝀 ∈ R𝑚 is the Lagrange multiplier
vector, a∗𝑐 ∈ R𝑚 is the affine constraint acceleration terms, and ¤𝐽 is 𝐽’s total time
derivative. These terms are obtained from holonomic and non-holonomic constraints
by differentiating them w.r.t. time once or twice respectively to get Eq. (3b).

Constrained ID problem is the mapping, ID𝑐 (𝒒, 𝝂, ¤𝝂, 𝝀) ↦→ 𝝉, which can be solved
by simply evaluating the left-hand-side of Eq. (3a). The unconstrained ID algorithm,
RNEA can be easily modified to include constraint forces 𝐽𝑇𝝀, and remains the
fastest constrained ID algorithm with an 𝑂 (𝑛 + 𝑚) complexity. The constrained
RNEA version computes neither 𝑀 nor 𝐽 explicitly. Assuming that 𝐽 is full row-
rank, constrained FD problem is the mapping, FD𝑐 (𝒒, 𝝂, 𝝉) ↦→ (𝝀, ¤𝝂), which requires
simultaneously solving the two linear equations in Eq. (3). Computing constrained
FD is significantly costlier than unconstrained FD (often by a factor ∼2), which is in
turn significantly costlier than computing the ID problems (again by a factor of ∼2).



8 Ajay Suresha Sathya, Lander Vanroye, Wilm Decre and Jan Swevers

Note 1 This chapter assumes that 𝐽 has full row-rank. This assumption is violated
if the motion constraints are redundantly or incorrectly specified. Then, there will
be either no solution for (𝝀, ¤𝝂) or an infinite number of solutions for 𝝀 . In practice,
this issue is handled via Tikhonov regularization [48], truncated SVD or proximal
iterations [49]. We avoid these details for simplicity.

For kinematic trees, it turns out that 𝐽 has a branching-induced sparsity pattern
similar to 𝑀 . This was exploited in an extension of the LTL algorithm [37] to obtain
a CDA with an expensive𝑂 (𝑛𝑑2+𝑚2𝑑+𝑚𝑑2+𝑚3) complexity, and is widely used in
existing simulators like Pinocchio [18], Raisim [50], MuJoCo [48], etc. Our recent
work proposes a faster recursive algorithm [14] similar to ABA with a low𝑂 (𝑛+𝑚)
complexity. In Section 5, we will show that a special case of the Riccati recursion
from Section 3 yields an 𝑂 (𝑛 + 𝑚) complexity constrained dynamics algorithm.

2.4 Adjoint-method for differentiation

We now review the adjoint method, which will later speed up differentiating dynamics
functions. Refer [19] for a tutorial introduction to the adjoint method.
First derivatives: Consider a twice-differentiable function 𝑓 (x, y(x)) : R𝑛𝑥×𝑛𝑦 ↦→
R, where x ∈ R𝑛𝑥 is an independent variable, and y(x) ∈ R𝑛𝑦 is a dependent variable.
Our problem is to compute 𝑑 𝑓

𝑑x , which from the chain rule is

𝑑𝑓

𝑑x
=
𝜕 𝑓

𝜕x
+ 𝜕 𝑓
𝜕y

𝑑y
𝑑x
. (4)

However, computing 𝑑y
𝑑x can be expensive and/or the function y(x) may not even

be explicitly available for differentiation. Suppose that y(x) is implicitly defined by
a twice-differentiable function g(x, y(x)) : R𝑛𝑥×𝑛𝑦 ↦→ R𝑛𝑦 , for which both 𝜕g

𝜕y is
invertible and g(x, y(x)) = 0𝑛𝑦 everywhere, i.e. ∀x ∈ R𝑛𝑥 . It follows that

𝑑g
𝑑x

= 0𝑛𝑦 , (5)

expanding which using chain rule gives

𝜕g
𝜕x
+ 𝜕g
𝜕y
𝑑y
𝑑x

= 0𝑛𝑦 , (6)

where using 𝜕g
𝜕y ’s invertibility, we have

𝑑y
𝑑x

= −
(
𝜕g
𝜕y

)−1
𝜕g
𝜕x
. (7)
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The result above is the well-known implicit function theorem [51]. Substituting
this in Eq. (4) gives

𝑑𝑓

𝑑x
=
𝜕 𝑓

𝜕x
− 𝜕 𝑓
𝜕y

(
𝜕g
𝜕y

−1 𝜕g
𝜕x

)
. (8)

Evaluating 𝑑y
𝑑x above (the expression in the parenthesis) requires an expensive matrix-

matrix operation. This can be avoided by re-ordering the parentheses

𝑑𝑓

𝑑x
=
𝜕 𝑓

𝜕x
−

(
𝜕 𝑓

𝜕y
𝜕g
𝜕y

−1) 𝜕g
𝜕x
, (9)

upon observing that 𝜕 𝑓
𝜕y is a 1× 𝑛𝑦 row vector using the associativity property of the

matrix product operation. Let 𝝁𝑇 ∈ R𝑛𝑦 denote the expression in the parentheses
above, which is evaluated by solving the linear system

𝜕g
𝜕y

𝑇

𝝁 =
𝜕 𝑓

𝜕y

𝑇

. (10)

The adjoint method gets its name from having to solve the transpose of 𝜕g
𝜕y above.

Substituting the value of 𝝁 in Eq. (9) gives an efficient expression to compute 𝑑 𝑓

𝑑x ,

𝑑𝑓

𝑑x
=
𝜕 𝑓

𝜕x
− 𝝁𝑇

𝜕g
𝜕x
. (11)

Second derivatives: To compute 𝑓 ’s Hessian, let us concatenate Eq. (11) and Eq. (10)(
𝑑 𝑓

𝑑x
𝑇

0

)
=

(
𝜕 𝑓

𝜕z

𝑇

− 𝜕g
𝜕z

𝑇

𝝁

)
, (12)

where z =
[
x𝑇 , y𝑇

]𝑇 . Differentiating the equation above again w.r.t. x gives(
𝑑2 𝑓

𝑑x2

0

)
=

(
𝜕2 𝑓

𝜕z2 −
𝜕2 (

g𝑇 �̃�
)

𝜕z2

) (
𝐼
𝑑y
𝑑x

)
−

(
𝜕g
𝜕z

)𝑇
𝑑𝝁

𝑑z

(
𝐼
𝑑y
𝑑x

)
, (13)

where, �̃� is fixed to the numerical value of 𝝁 during differentiation, and computing
𝑑𝝁
𝑑z requires expensively differentiating through the solution of Eq. (10). However,
this can be avoided. Restating Eq. (6) gives

𝜕g
𝜕z

(
𝐼𝑛𝑥
𝑑y
𝑑x

)
= 0,

using which, pre-multiplying the Hessian equation in Eq. (13) by
(
𝐼𝑛𝑥

𝑑y
𝑑x
𝑇
)

simpli-
fies the Hessian expression to
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𝑑2 𝑓

𝑑x2 =

(
𝐼𝑛𝑥

𝑑y
𝑑x
𝑇
) (
𝜕2 𝑓

𝜕z2 −
𝜕2 (

g𝑇 �̃�
)

𝜕z2

) (
𝐼𝑛𝑥
𝑑y
𝑑x

)
. (14)

3 Efficient LQR solver

We now derive the generalized Riccati recursion algorithm [12] for a stage-
wise equality constrained LQR problem, that will form the basis of both the fast
OCP solver and constrained dynamics algorithms discussed later. Our dynamic
programming based derivation of [12] is different from the linear algebra based
derivation in [12] and may be more intuitive to some readers. Consider an LQR
problem of the following form

minimize
x,u

𝐾−1∑︁
𝑘=0

{
1
2

(
u𝑘
x𝑘

)𝑇 (
𝑅𝑘 𝑆

𝑇
𝑘

𝑆𝑘 𝑄𝑘

) (
uk
x𝑘

)
+

(
r𝑘
q𝑘

)𝑇 (
u𝑘
x𝑘

)}
+ x𝑇𝐾𝑄𝐾x𝐾 + q𝑇𝐾x𝐾 ,

(15a)
subject to x𝑘+1 = 𝐴𝑘x𝑘 + 𝐵𝑘u𝑘 + b𝑘 , 𝑘 = 0, 1, . . . , 𝐾 − 1, (15b)

𝐺𝑘,𝑥x𝑘 + 𝐺𝑘,𝑢u𝑘 = −g𝑘 , 𝑘 = 0, 1, . . . , 𝐾 − 1, (15c)
𝐺𝐾,𝑥x𝐾 = −g𝐾 . (15d)

Due to the additional stage-wise and terminal equality constraints in Eq. (15c)
and Eq. (15d), vanilla Riccati recursion [2] using the so-called cost-to-go function
does not suffice. We will instead use a ‘constrained cost-to-go’ problem. Suppose
that the optimal ‘constrained cost-to-go’ problem at stage 𝑘 can be parameterized as

𝑉∗𝑘 (x𝑘) =
1
2

x𝑇𝑘 𝑃𝑘x𝑘 + p𝑇𝑘 x𝑘 , (16a)

subject to �̂�𝑘,𝑥x𝑘 = −ĝ𝑘 . (16b)

Bellman recurrence relation: Using Bellman’s recurrence relation, the optimal
‘constrained cost-to-go’ problem at stage 𝑘 is written as the solution to

minimize
x𝑘+1 ,u𝑘

{
1
2

(
u𝑘
x𝑘

)𝑇 (
𝑅𝑘 𝑆

𝑇
𝑘

𝑆𝑘 𝑄𝑘

) (
uk
x𝑘

)
+

(
r𝑘
q𝑘

)𝑇 (
u𝑘
x𝑘

)}
+ 1

2
x𝑇𝑘+1𝑃𝑘+1x𝑘+1 + p𝑇𝑘+1x𝑘+1

(17a)
subject to x𝑘+1 = 𝐴𝑘x𝑘 + 𝐵𝑘u𝑘 + b𝑘 , (17b)

𝐺𝑘,𝑥x𝑘 + 𝐺𝑘,𝑢u𝑘 = −g𝑘 , (17c)

�̂�𝑘+1,𝑥x𝑘+1 = −ĝ𝑘+1. (17d)
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Eliminating system dynamics: We first eliminate the dynamics constraints in
Eq. (17b) through substitution to get

minimize
u𝑘

1
2

(
u𝑘
x𝑘

)𝑇 (
�̄�𝑘 𝑆

𝑇
𝑘

𝑆𝑘 �̄�𝑘

) (
uk
x𝑘

)
+

(
r̄𝑘
q̄𝑘

)𝑇 (
u𝑘
x𝑘

)
(18a)

subject to �̄�𝑘,𝑥x𝑘 + �̄�𝑘,𝑢u𝑘 = −ḡ𝑘 , (18b)

where

�̄�𝑘 = 𝑅𝑘 + 𝐵𝑇𝑘 𝑃𝑘+1𝐵𝑘 , 𝑆𝑘 = 𝑆𝑘 + 𝐴𝑇𝑘 𝑃𝑘+1𝐵𝑘 , �̄�𝑘 = 𝑄𝑘 + 𝐴𝑇𝑘 𝑃𝑘+1𝐴𝑘 ,

r̄𝑘 = r𝑘 + 𝐵𝑇𝑘 (p𝑘+1 + 𝑃𝑘+1b𝑘) , q̄𝑘 = q𝑘 + 𝐴𝑇𝑘 (p𝑘+1 + 𝑃𝑘+1b𝑘) ,

�̄�𝑘,𝑥 =

(
𝐺𝑘,𝑥

�̂�𝑘+1,𝑥𝐴𝑘

)
, �̄�𝑘,𝑢 =

(
𝐺𝑘,𝑢

�̂�𝑘+1,𝑥𝐵𝑘

)
, ḡ𝑘 =

(
g𝑘

ĝ𝑘+1 + �̂�𝑘+1,𝑥b𝑘

)
.

Decomposing the problem into the range and nullspace of �̄�𝑘,𝑢: To optimize
Eq. (18a) over u𝑘 subject to the constraint in Eq. (18b), we compute the nullspace
of �̄�𝑘,𝑢, using the following decomposition.

�̄�𝑘,𝑢 = 𝑇𝑘,𝐿

(
𝐼𝜌𝑘

0𝑚𝑘−𝜌𝑘×𝑛𝑢−𝜌𝑘

)
𝑇𝑘,𝑅, (19)

where 𝑇𝑘,𝐿 ∈ R𝑚𝑘×𝑚𝑘 and 𝑇𝑘,𝑅 ∈ R𝑛𝑢×𝑛𝑢 are invertible matrices and 𝜌𝑘 is the
rank of �̄�𝑘,𝑢. We compute this decomposition using completely pivoted LU factor-
ization [12, Section 2.3] for computational efficiency. Other slower, but potentially
more numerical stable, algorithms like singular value decomposition (SVD) or QR
decomposition could also be used. Let

u𝑘 = 𝑇−1
𝑘,𝑅

(
ũ𝑘
û𝑘

)
, (20)

where ũ𝑘 ∈ R𝜌𝑘 and û𝑘 ∈ R𝑛𝑢−𝜌𝑘 . Substituting Eq. (20) into Eq. (18a) gives

1
2

©«
ũ𝑘
û𝑘
x𝑘

ª®¬
𝑇 ©«
�̃�𝑘

ˆ̃𝑅𝑇
𝑘
𝑆𝑇
𝑘

ˆ̃𝑅𝑘 �̂�𝑘 𝑆
′𝑇
𝑘

𝑆𝑘 𝑆
′

𝑘
�̄�𝑘

ª®®¬
©«
ũ𝑘
û𝑘
x𝑘

ª®¬ + ©«
r̃𝑘
r̂′
𝑘

q̄𝑘

ª®¬
𝑇 ©«

ũ𝑘
û𝑘
x𝑘

ª®¬ , (21)

where (
�̃�𝑘

ˆ̃𝑅𝑇
𝑘

ˆ̃𝑅𝑘 �̂�𝑘

)
= 𝑇−𝑇𝑘,𝑅 �̄�𝑘𝑇

−1
𝑘,𝑅,

(
𝑆𝑘 𝑆

′

𝑘

)
= 𝑆𝑘𝑇

−1
𝑘,𝑅,

(
r̃𝑘
r̂′
𝑘

)
= 𝑇−𝑇𝑘,𝑅 r̄𝑘 .

Substituting Eq. (20) into Eq. (18b) and left-multiplying it with 𝑇−1
𝑘,𝐿

gives(
𝐼𝜌𝑘

0(𝑛𝑢−𝜌𝑘 )×(𝑛𝑢−𝜌𝑘 )

) (
ũ𝑘
û𝑘

)
= −

(
�̃�𝑘,𝑥

�̂�𝑘,𝑥

)
x𝑘 −

(
g̃𝑘
ĝ𝑘

)
, (22)



12 Ajay Suresha Sathya, Lander Vanroye, Wilm Decre and Jan Swevers

where (
�̃�𝑘,𝑥

�̂�𝑘,𝑥

)
= 𝑇−1

𝑘,𝐿�̄�𝑘,𝑥 ,

(
g̃𝑘
ĝ𝑘

)
= 𝑇−1

𝑘,𝐿 ḡ𝑘 .

Eliminating ũ𝑘: From Eq. (22), we readily have that

ũ𝑘 = −�̃�𝑘,𝑥x𝑘 − g̃𝑘 , (23)

which is substituted in Eq. (21) to get the following objective function

1
2

(
û𝑘
x𝑘

)𝑇 (
�̂�𝑘 𝑆

𝑇
𝑘

𝑆𝑘 �̂�𝑘

) (
û𝑘
x𝑘

)
+

(
r̂𝑘
q̂𝑘

)𝑇 (
û𝑘
x𝑘

)
, (24)

where

�̂�𝑘 = �̄�𝑘 + �̃�𝑇𝑘,𝑥 �̃�𝑘�̃�𝑘,𝑥 − (𝑆𝑘�̃�𝑘 + �̃�
𝑇
𝑘 𝑆
𝑇
𝑘 ), 𝑆𝑘 = 𝑆

′

𝑘 + �̃�
𝑇
𝑘,𝑥

ˆ̃𝑅𝑇𝑘

𝑟𝑘 = 𝑟
′

𝑘 − ˆ̃𝑅𝑘 �̃�𝑘 , 𝑞𝑘 = 𝑞
′

𝑘 + �̃�
𝑇
𝑘,𝑥 �̃�𝑘 �̃�𝑘 − 𝑆𝑘 �̃�𝑘 − �̃�

𝑇
𝑘,𝑥𝑟𝑘 .

Solving for û𝑘: Assuming that the reduced Hessian of the constrained LQR prob-
lem [12, Definition 1] is positive definite, �̂�𝑘 is invertible [12], which is anyway
a necessary condition for the LQR problem to have a unique minimizer [8, Thm.
16.2]. Finally û𝑘 , which is unconstrained, can be minimized and eliminated using
the Schur complement from the objective function in Eq. (24) to get

1
2

x𝑇𝑘 𝑃𝑘x𝑘 + p𝑇𝑘 x𝑘 , (25)

where
𝑃𝑘 = �̂�𝑘 − 𝑆𝑘 �̂�−1

𝑘 𝑆
𝑇
𝑘 , p𝑘 = 𝑞𝑘 − 𝑆𝑇𝑘 �̂�

−1
𝑘 𝑟𝑘 ,

with the optimal û𝑘 given by

û𝑘 = −�̂�−1
𝑘

(
𝑆𝑇𝑘 x𝑘 + 𝑟𝑘

)
. (26)

The objective function in Eq. (25) combined with the uneliminated constraint on
x𝑘 from Eq. (22)

�̂�𝑘,𝑥x𝑘 = −ĝ𝑘
gives the optimal constrained cost-to-go function at stage 𝑘 with the parametric form
assumed in Eq. (16). We now have a recursive set of equations to compute 𝑉∗

𝑘
(x𝑘)

from 𝑉∗
𝑘+1 (x𝑘+1). The constrained cost-to-go function at the final stage 𝐾 is already

in the parametric form of Eq. (16) with 𝑃𝐾 = 𝑄𝐾 and p𝐾 = q𝐾 . The computations
derived above can be performed till the initial state recursively to obtain

𝑉∗0 (x0) =
1
2

x𝑇0 𝑃0x0 + p𝑇0 x0, (27)

subject to �̂�0,𝑥x0 = −ĝ0,
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whereupon the initial state x0 is computed by solving a small equality constrained
QP. Often, the initial state is fully-constrained from estimator feedback, in which
case, solving this QP is skipped.

Forward rollout: Now we have all the ingredients to compute the optimal û𝑘 , ũ𝑘 ,
u𝑘 and x𝑘 using the equations 26, 23, 20, and 15b respectively in a forward rollout
from 𝑘 = 0 to 𝑘 = 𝐾 − 1.

Recovering optimal Lagrange multipliers: Suppose that 𝜼𝑑,𝑘 , 𝜼𝑐,𝑘 and 𝜼𝑇,𝑘+1
refer respectively to the Lagrange multipliers of dynamics, stage-wise and terminal
constraint (see Eqs. (17b), (17c) and (17d) respectively) of the Bellman recurrence
subproblem. From the dual feasibility KKT conditions by taking gradient w.r.t x𝑘+1
in Eq. (17), it can be shown that the optimal 𝜼𝑑,𝑘 are given by

𝜼𝑑,𝑘 = 𝑃𝑘+1x𝑘+1 + �̂�𝑇𝑘+1,𝑥𝜼𝑇,𝑘+1 + p𝑘+1. (28)

Due to the constraint frame transformation with nullspace decomposition, we get[
𝜼𝑐,𝑘
𝜼𝑇,𝑘+1

]
= 𝑇−𝑇𝑘,𝐿

[
�̃�𝑐,𝑘
𝜼𝑇,𝑘

]
. (29)

The dual feasibility condition of the problem in Eq. (21) by differentiating w.r.t ũk
gives

�̃�𝑐,𝑘 = �̃�𝑘 ũ𝑘 + 𝑆𝑘x𝑘 + ˆ̃𝑅𝑘 ûk + r̃𝑘 . (30)

𝜼𝑇,0 is computed at the end of backward Riccati recursion while solving the opti-
mization problem in Eq.(27), following which Eqs.(30), (29), (28) are evaluated in
that order at every 𝑘 during the roll-out to compute the optimal Lagrange multipliers.

Relation to existing LQR solvers: Our LQR solver makes fewer regularity as-
sumptions than related equality-constrained LQR solvers [52, 53, 54] in literature by
only requiring the reduced Hessian to be positive definite, which is anyway a nec-
essary condition for the LQR problem to be well-posed. [53] and [54] assume that
the full space Hessian is positive definite, which implies that all the constraints are
linearly independent. [52] assumes that 𝑅𝑘 is positive definite and requires 𝐺𝑘,𝑢 to
be full row-rank, which implicitly restricts the stage-wise constraints to be fewer than
the control input’s dimension. This prevents, for example, imposing terminal state
constraints on an underactuated robot platform. Other closely related algorithm [55]
uses expensive SVD operations to compute Eq. (19) in contrast to the LU decom-
position used by us and [55], implemented in MATLAB, is not accompanied by
code release. Recent work [10] using proximal algorithms [56] requires the reduced
Hessian to be only positive semidefinite, but it performs expensive Schur comple-
ment on larger matrices than us and is an iterative algorithm unlike our LQR solver.
Furthermore, our C++ implementation uses the tailored BLASFEO linear algebra
library, further contributing to its speed. Readers are referred to [12] for detailed
benchmarking of our LQR solver.
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4 Fatrop

We now briefly review our state-of-the-art nonlinear OCP solver Fatrop. As men-
tioned in Section. 1.2, Fatrop aims to combine the speed of structure-exploiting
solvers with the relative robustness of mature off-the-shelf NLP solvers. To achieve
this, we have chosen to emulate the nonlinear interior point strategy and the advanced
globalization from the widely-used IPOPT [22] solver in Fatrop, thereby inheriting
IPOPT’s global and quadratic local convergence properties. Our choice is informed
by our prior positive experience with IPOPT on robotics problems.

Applying IPOPT’s interior point method to solve the OCP from Eq. 1 results in a
linear system that is then solved using the Riccati recursion derived in the previous
section. We now show how to derive this linear system from the OCP. Due to several
derivations in this section, it was difficult to avoid notational overlap between this
section and the rest of the section. We apologize for this overlap and ask readers to
consider this section’s notation to be self-contained in a ‘local scope’.

Let the OCP from Eq. 1 be reformulated as the following NLP with slack variables,
without any loss of generality

minimize
x,s

𝑓 (x) (31a)

subject to h(x) = 0, g(x) − s = 0, s ≥ 0, (31b)

where x includes all the state and control variables from Eq. 1 and s denotes the slack
variables. The positivity constraint on the slack variables is enforced by introducing
a logarithmic barrier term in the objective function:

minimize
x,s

𝑓 (x) − 𝜇 𝑗
∑︁
𝑖

log(𝑠𝑖) (32a)

subject to h(x) = 0, g(x) − s = 0. (32b)

After introducing additional auxiliary variables 𝑧𝑖 = 𝜇 𝑗/𝑠𝑖 , the problem above is
solved via Newton iterations over the set of nonlinear equations

∇xL = 0, ∇sL = 0, (33a)
h(x) = 0, g(x) − s = 0, (33b)

diag(z)s = 𝜇 𝑗1, (33c)

which together with x, z ≥ 0 constitute the first-order necessary optimality conditions
or the KKT conditions [8] associated with Eq. (32). The Lagrangian function L is
defined as

L := 𝑓 (x) + 𝜼𝑇h h(x) + 𝜼𝑇g (g(x) − s) − z𝑇s.

The centering equation in Eq. (33c) is a relaxed version of the complementarity
conditions of the original problem in Eq. (31). Note that these KKT conditions tend
to KKT conditions of the original problem as the barrier parameter 𝜇 𝑗 decreases
to zero. Therefore, a homotopy is used that starts with a non-zero 𝜇 𝑗 , solves the
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nonlinear systems from Eq. 33c using Newton’s method and decreases the 𝜇 𝑗 value
until convergence. This is the essential idea behind the primal-dual interior-point
method. Each Newton iteration solves the linear system

©«
∇2

xxL Jh
𝑇 Jg

𝑇

−I −I
Jh
Jg −I

Z S

ª®®®®®¬
©«
Δx
Δs
Δ𝜼h
Δ𝜼g
Δz

ª®®®®®¬
= −

©«
∇xL
∇sL

h
g − s

Sz − 𝜇 𝑗e

ª®®®®®¬
, (34)

where a capital symbol such as S is a diagonal matrix with the vector s constituting
its diagonal. Δs, Δ𝜼𝒈 and Δz can be eliminated to obtain a symmetric (possibly
indefinite) linear system(

∇2
xxL + Jg

𝑇S−1ZJg Jh
𝑇

Jh

) (
Δx
Δ𝜼𝒉

)
= −

(
𝜸
h

)
, (35)

which we call the reduced primal-dual system, where

𝜸 = ∇xL + J𝑇g (−𝜂g − S−1 (
𝜇 𝑗1 − Z(g − s)

)
).

From the reduced system’s solution, Δs, Δ𝜼𝒈 and Δz can be recovered using

Δs = JgΔx + g − s, (36a)

Δ𝜼𝒈 = −𝜼𝒈 − S−1 (𝜇 𝑗e − ZΔs), (36b)

Δz = −z + S−1 (𝜇 𝑗e − ZΔs). (36c)

Due to the stage-wise constraint structure assumed in Eq. (1), differentiating these
stage-wise functions gives the corresponding reduced primal-dual system in Eq. (35).
This reduced system can be shown to have a sparsity pattern that matches that of the
equality-constrained LQR problem in Eq. (15). The terms ∇2

xxL + Jg
𝑇S−1ZJg and

𝜸 correspond to the LQR’s quadratic and linear cost terms respectively, while Jh
and h corresponds to LQR’s equality constraints. Apart from the cost of computing
the terms in Eq. (34), solving the reduced system in Eq. (35) is typically the most
computationally expensive step for an OCP solver and this step is greatly accelerated
in Fatrop using Riccati recursion derived in the previous section. Similarly to
Acados, Fatrop also uses the Blasfeo [25] library, which is highly optimized for
its linear algebra operations. Note that for OCPs that lead to an indefinite reduced
Hessian, during the Riccati recursion �̂�𝑘’s factorization fails at the Schur complement
step in Eq. (25). To address this, we employ Hessian regularization similarly to
IPOPT [22].

For a detailed introduction and analysis of primal-dual interior-point methods we
refer readers to [8]. Fatrop currently implements nearly all the advanced globalized
features of IPOPT [22], except for the restoration phase. For more details on Fatrop
and its benchmarking compared to other OCP solvers, we refer readers to [16].
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5 Constrained dynamics as an LQR problem

This section formulates the constrained dynamics problem as an equivalent
equality-constrained LQR problem, which turns out to be a special case of the
LQR formulation considered in Section. 3. Instead of the generalized coordinate
formulation in Eq. (3), we formulate the constrained dynamics problem differently
here and will shortly explain its connection to Eq. (3). We use Gauss’ principle of
least constraint (GPLC) [57, 58], a formulation of mechanics according to which,
the acceleration of a constrained system rigid bodies under the influence of exter-
nal forces is as close as possible to the unconstrained acceleration in a weighted
least-squares sense. This optimization problem expressed in the so-called maximal
coordinates is

minimize
a1 ,...,a𝑛 , ¤𝝂

𝑛∑︁
𝑖=1

1
2

(
a𝑖 − 𝐻−1

𝑖 f𝑖
)𝑇
𝐻𝑖

(
a𝑖 − 𝐻−1

𝑖 f𝑖
)
, (37a)

subject to a𝑖 = a𝑖−1 + 𝐵𝑖 ¤𝝂𝑖 + a𝑏,𝑖 , 𝑖 = 1, 2, . . . , 𝑛, (37b)
𝐾𝑖a𝑖 = k𝑖 , 𝑖 = 1, 2, . . . , 𝑛, (37c)
a0 = −agrav, (37d)

where we follow the standard spatial algebra notation of Featherstone [35]. a𝑖 ∈ R6,
𝐻𝑖 ∈ S6

++ and f𝑖 ∈ R6 are respectively the 𝑖th body’s spatial accelerations, spatial
inertia tensor and the spatial forces acting on the 𝑖th rigid body. f𝑖 includes the
bias forces (−v𝑖 ×∗ 𝐻𝑖v𝑖), where v𝑖 is the 𝑖th body’s spatial velocity. a𝑏,𝑖 = v𝑖 ×
𝐵𝑖𝝂𝑖 and agrav are the bias accelerations and the spatial acceleration-due-to-gravity
vectors. 𝐾𝑖 ∈ R𝑚𝑖×6 and k𝑖 ∈ R𝑚𝑖 are the constraint matrix and desired constraint
accelerations on the 𝑖th link. × and ×∗ generalizes the notion of a cross-product to
spatial motion vectors and force vectors. The spatial algebra notation enables treating
6D motions and forces as elements of a dual vector-space, enabling their addition and
subtraction. This greatly simplifies deriving and implementing dynamics algorithms.
We refer readers to [35] for a detailed introduction. All the physical quantities here
are defined w.r.t. and expressed in an inertial frame for notational simplicity.
Connection to Eq. (3): The 𝑀 and c terms are typically computed from the 𝒒,
𝐻𝑖 , and 𝝂 terms. Efficient algorithms to do so are RNEA [59] and CRBA [46] for
c and 𝑀 respectively, as explained in [35, Section 6.1]. The 𝐽, ¤𝐽 and a∗𝑐 terms
from Eq. (3) are also typically computed from the 𝐾𝑖 and k𝑖 terms above using
each constrained link’s kinematic Jacobian as explained in [14, Eq. 3]. Finally, the
connection between f𝑖 above and 𝝉 is shown in [14, Eq. 23]. Note that the formulation
above can be considered to be a lower-level formulation of the constrained dynamics
problem since the terms of the generalized coordinate formulation in Eq. (3) are
computed from the terms in formulation above.
Connecting GPLC to the LQR problem: The objective function in (37a) can be
further simplified after ignoring constant terms to get
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𝑛∑︁
𝑖=1

1
2

a𝑇𝑖 𝐻𝑖a𝑖 − a𝑇𝑖 f𝑖 ,

comparing which to (15), we see that the GPLC is a special case of the equality-
constrained LQR problem in Section 3 with

x𝑖 = a𝑖−1, u𝑖 = ¤𝝂𝑖 , 𝑄𝑖 = 𝐻𝑖 , 𝑅𝑖 = 0𝑛𝑢×𝑛𝑢 , 𝑆𝑖 = 06×𝑛𝑢 , q𝑖 = −f𝑖 , r𝑖 = 0𝑛𝑢 , (38)
𝐴𝑖 = 𝐼6×6, 𝐵𝑖 = 𝐵𝑖 , b𝑖 = a𝑏,𝑖 , 𝐺𝑘,𝑥 = 𝐾𝑖 , 𝐺𝑘,𝑢 = 0𝑚𝑖×𝑛𝑢 , g𝑘 = −k𝑖 .

With this, Fatrop’s LQR solver can be called to solve the constrained dynamics
problems efficiently with a computational complexity of 𝑂 (𝑛 + 𝑚), where 𝑚 is the
number of constraints on the system.
Comparison with existing constrained dynamics solvers: Constrained dynamics-
LQR connection was already made in the 1970s, and used to derive the PV algorithm
in [60, 38]. However, their algorithm first eliminated all the primal variables and
then the dual variables to get a hig computational complexity of 𝑂 (𝑛 + 𝑚2𝑑 + 𝑚3),
where 𝑑 is the kinematic tree depth. However, this LQR connection was sparsely
known in the robotics community, resulting in most existing simulators using the
relatively more inefficient LTL algorithms [36, 37] with the worst case computational
complexity of𝑂 (𝑛𝑑2+𝑚2𝑑+𝑑𝑚2+𝑚3). The LQR connection had not been exploited
to solve constrained dynamics until our recent work [14], which proposed a closely
related Riccati recursion algorithm called PV-early algorithm with the computational
complexity of 𝑂 (𝑛 + 𝑚) similarly to Fatrop’s LQR solver. The PV-early algorithm
is currently the most efficient algorithm reported in robot dynamics literature. It can
provide over 2x speed-up compared to the LTL algorithms for humanoid robots.
Readers are referred to [14] for more detailed benchmarking results.

The primary difference between the PV-early algorithm and Fatrop’s LQR solver,
is that PV-early computes the Schur complement to eliminate u𝑖 before eliminating
the constraints, whereas this order is reversed in Section 3. PV-early’s algorithm is
always feasible for mechanics problems since 𝑃𝑖 from Section 3 is guaranteed to
be positive definite as it corresponds to an inertial quantity, whereas Fatrop’s linear
solver makes fewer assumptions by requiring only the reduced Hessian to be positive
definite [12]. We refer readers to [14] for insight on the physical interpretation of
the Riccati recursion terms when applied to dynamics problems. This suggests that
Fatrop’s LQR solver could be more efficient than PV-early because it eliminates the
smaller ũ𝑖 vector during the Schur complement step. Therefore, it is an interesting
future research direction to implement a specialized version of Fatrop’s LQR solver
to compute constrained dynamics problems.

6 Efficient constrained dynamics derivatives
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We now apply the implicit function theorem and the adjoint method covered in
Sec 2.4 to efficiently compute the constrained dynamics Jacobian and the constrained
dynamics’ contribution to the Lagrangian’s gradient and Hessian. We start with the
unconstrained FD Jacobian, before moving on to the more complex constrained
setting. Finally, we discuss computing the first and the second derivatives of the
Lagrangian function.
Unconstrained FD: Similarly to [13], let us define an implicit function

g𝑢 (𝒒, 𝝂, 𝝉, ¤𝝂) = ID(𝒒, 𝝂, ¤𝝂) − 𝝉 = 0𝑛, (39)

comparing which with the implicit function g(x, y(x)) introduced in Sec 2.4, x =

[𝒒𝑇 , 𝝂𝑇 , 𝝉𝑇 ]𝑇 and y = ¤𝝂 = FD(𝒒, 𝝂, 𝝉). This choice of g𝑢 is valid since it is zero
everywhere by definition and 𝜕g𝑢

𝜕𝒚 = 𝜕ID
𝜕¤𝝂 = 𝑀 is positive definite and hence invertible.

Applying the implicit function theorem from (7) readily gives

𝜕FD
𝜕 𝒒, 𝝂, 𝝉

= −𝑀−1 𝜕g𝑢
𝜕 𝒒, 𝝂, 𝝉

. (40)

Evaluating the right-hand-side of the expression above involves differentiating ID,
which is significantly cheaper than directly differentiating FD functions. 𝑀−1 = 𝜕FD

𝝏𝝉
is obtained by differentiating FD (the PV-early algorithm in our case) w.r.t. 𝝉, which
is an exception to the rule that differentiating through FD is expensive. Computing
𝑀−1 this way is more efficient than computing 𝑀 and factorizing/inverting it.
Constrained FD: Analogously to the previous section, we define an implicit function

g𝑐 (𝒒, 𝝂, 𝝉, 𝝀, ¤𝝂) =
(

f𝑐,𝑎 (𝒒, 𝝂, ¤𝝂)
ID𝑐 (𝒒, 𝝂, 𝝀, ¤𝝂) − 𝝉

)
= 0𝑛+𝑚, (41)

where f𝑐,𝑎 encodes motion constraints at the acceleration level from Eq. (3b). Com-
paring the equation above with the implicit function g(x, y(x)) from Section. 2.4,
we have x = [𝒒𝑇 , 𝝂𝑇 , 𝝉𝑇 ]𝑇 and y = [𝝀𝑇 , ¤𝝂𝑇 ]𝑇 = FD𝑐 (𝒒, 𝝂, 𝝉). Similarly to the
unconstrained setting, g𝑐 is zero everywhere by definition, and we have that

𝜕g𝑐
𝜕 y

=

(
0𝑚×𝑚 𝐽

𝐽𝑇 𝑀

)
, (42)

is invertible from Note 1 and positive definiteness of 𝑀 . Applying the implicit
function theorem from (7) gives

𝜕FD𝑐
𝜕 𝒒, 𝝂, 𝝉

= −
(
0𝑚×𝑚 𝐽

𝐽𝑇 𝑀

)−1
𝜕g𝑐

𝜕 𝒒, 𝝂, 𝝉
. (43)

The matrix
(
0𝑚×𝑚 𝐽

𝐽𝑇 𝑀

)−1
can be efficiently computed by evaluating the term

𝜕FD𝑐
𝜕

[
k𝑇 𝝉𝑇

]𝑇 using the PV-early solver. k is the concatenated vector of all the right-

hand-side of the motion constraints from Eq. 37d.
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Gradient and Hessian of the OCP Lagrangian: The OCP solver in (34) requires the
Lagrangian Hessian ∇2

xxL. Computing this term by directly differentiating through
constrained FD algorithms is expensive. The adjoint method mitigates this issue
and can be readily applied using Eqs. 11 and 14. The 𝑓 in these equations refers
to the FD function’s contribution to the Lagrangian L. For example, 𝑓 = 𝜼𝑇 ¤𝝂Δ𝑡
for an explicit Euler integrator scheme, where 𝜼 is the corresponding Lagrangian
multiplier and Δ𝑡 is the time-step. Constrained FD can also be a part of the objective
function, e.g., suppose user chooses to regularize 𝝂. Then, for the adjoint method
𝑓 = ¤𝝂𝑇 ¤𝝂. It can be more complex for other integration methods like exponential
map of spatial velocity [61]. However, the key aspect is that 𝜕2 ( 𝑓 −g𝑇𝑐 �̃�)

𝜕z2 and 𝜕 𝑓

𝜕y
can be computed conveniently using AD software. The remaining terms needed to
compute the Lagrangian gradient and Hessian are already available from the Jacobian
computation ( 𝜕y

𝜕x ) discussed above in both unconstrained and constrained settings.
The proposed adjoint method is listed as an algorithm in Algorithm 1, where the
notation .z implies that the elements of z are appropriately unpacked as inputs to the
corresponding functions.

Algorithm 1 Adjoint method
with functions FD𝑐 (𝒒, 𝝂, 𝝉, k), g𝑐 (𝒒, 𝝂, 𝝉 ¤𝝂, 𝝀, k), 𝑓 (𝒒, 𝝂, 𝝉, ¤𝝂, 𝝀, 𝜼) , and with
x = [𝒒𝑇 𝝂𝑇 𝝉𝑇 ]𝑇 , y = [𝝀𝑇 ¤𝝂𝑇 ]𝑇 , z = [x𝑇 y𝑇 ]𝑇
Input: 𝒒, 𝝂, 𝝉, 𝜼, k

1: y← FD𝑐 (.x, k)

2: Solve for 𝝁:
(
𝜕g𝑐
𝜕y

���
z,k

)𝑇
𝝁 =

(
𝜕 𝑓

𝜕y

���
z,𝜼

)𝑇
⊲ AD

3: 𝜕FD𝑐
𝜕x

���
z,k
← 𝜕FD𝑐

𝜕

[
k𝑇 𝝉𝑇

]𝑇
�����
x,k

𝜕g𝑐
𝜕x

���
z,k

⊲ AD

4: 𝜕2 𝑓

𝜕x2 (.z, .FD𝑐 (.z, k) , 𝜼)
���
z,k,𝜼

← 𝐺𝑇
𝜕2 ( 𝑓 −g𝑇𝑐 𝝁)

𝜕z2

���
z,k,𝜼

𝐺 ⊲ AD

with 𝐺 =

(
I

𝜕FD𝑐
𝜕x

���
z,k

)
Output: ¤𝝂, 𝜕FD𝑐

𝜕x

���
z,k

, 𝜕
2 𝑓

𝜕x2 (.z, .FD𝑐 (.z, k) , 𝜼)
���
z,k,𝜼

Relation to existing work: [9] also proposes an approach to compute the exact
Lagrangian Hessian. It can be shown that the Hessian computation from Eq. (14)
obtained using the adjoint method is equivalent to [9]’s approach. However, the
derivation in [9] uses 4-D tensors and is significantly more complex than ours and
involved manually differentiating FD𝑐 w.r.t. to each term. Moreover, we allow 𝑓 to
be any twice-differentiable function of y while it was assumed to be 𝜼𝑇 ¤𝝂 in [9]. [9]
proposes a modified RNEA, which requires one computation sweep compared to
classical RNEA’s two sweeps, to compute and differentiate g𝑐. Modified RNEA was
found give up to ∼ 25% speed-up [44] compared to RNEA and can also be adopted
in our framework when 𝑓 = 𝜼 ¤𝝂. For simplicity, this is left for future work.
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7 Computational Benchmarking

We implemented a point-to-point motion (P2P) trajectory optimization task for a
7 DoF Kuka LBR iiwa arm using Fatrop [16] and PV-early algorithm [14] as the
OCP solver and CDA respectively. The Lagrangian’s derivatives are computed using
the adjoint method from Section 6 and the AD tool CasADi [17]. Computational tim-
ings are benchmarked on a 13th Gen Intel® Core™ i9-13950HX laptop CPU
running an Ubuntu 22.04LTS operating system.

Since previous papers [16, 14] have benchmarked Fatrop and PV-early algorithm,
we benchmark the adjoint method in this section. We first compare the operation
counts for various functions in unconstrained and constrained settings, followed
by description of the point-to-point motion problem on which we subsequently
benchmark the OCP solution timings.
Operation counts of derivative computation:
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Fig. 1: Operation count for different dynamics functions and their derivatives.

Table 1: Computational speed-up obtained by the adjoint method compared to
CasADi.

Unconstrained Constrained
𝜕FD 1.56x 1.60x

𝜕2𝜂𝑇FD 1.45x 2.21x

Figure 1 lists the number of operations (floating-point addition, multiplication,
division, sin/cos, etc.) required to compute the different dynamics functions, where
we used CasADi to get the operation count. 𝜕𝐼𝐷𝑐 and 𝜕𝐹𝐷𝑐 refer to ID and FD
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Jacobians respectively computed by CasADi, while 𝜕𝐹𝐷𝑎 refers to FD Jacobian
computed using the implicit function approach. Similarly, 𝜕2𝜂𝑇 ID𝑐 and 𝜕2𝜂𝑇FD𝑐
refer to the Hessian of 𝜼𝑇 ID and 𝜼𝑇FD respectively computed using CasADi, while
𝜕2𝜂𝑇FD𝑎 is computed using the adjoint method. Table 1 lists the speed-up obtained
by the adjoint method compared to using only CasADi.
Benchmarking OCP solution times:

Table 2: Benchmarking the computational cost of the adjoint method while solving
a point-to-point OCP for a Kuka LBR iiwa robot arm using the Fatrop solver. The
cost per iteration is presented in square brackets, the percentage of cost spent in
function evaluations in parentheses and the number of iterations taken in the curly
brackets. All computations are performed on a single CPU core with TurboBoost
enabled.

Unconstrained Constrained
Exact Hessian - CasADi 10.9 ms [0.64 ms] (65%) {17} 7.6 ms [0.95 ms] (82%) {8}
Exact Hessian - adjoint 8.7 ms [0.51 ms] (56%) {17} 4.1 ms [0.52 ms] (64%) {8}

No second-order dyn - CasADi 10.4 ms [0.37 ms] (50%) {28} 7.5 ms [0.47 ms] (67%) {19}
No second-order dyn - adjoint 8.8 ms [0.31 ms] (39%) {28} 6.4 ms [0.34 ms] (52%) {19}

We now benchmark the adjoint method’s influence on OCP solution timings.
Consider a point-to-point motion task for a 7 DoF Kuka LBR iiwa robot arm, with
the desired joint position imposed with a terminal equality constraint. Stage-wise
inequality constraints were imposed on the joint positions, velocities and torques,
leading to 21 inequality constraints per stage. Explicit Euler method was used to
simulate the system forward by a time-step of 50 ms, for a total of 50 steps in the
OCP to get a total horizon period of 2.5 s. Stage-wise costs were simply quadratic
regularization on the joint torques and joint velocities. We tested both the exact-
Hessian method, where the second derivatives of the dynamics terms are computed
and used in the Lagrangian, and the Hessian approximation, where the second
derivatives of the dynamics terms are omitted in the Lagrangian Hessian. We tested
the method for unconstrained FD, where the arm is moving in free-space, and also
in a constrained setting, where the end-effector is rigidly fixed with a 6D constraint.
In the constrained dynamics setting, the terminal equality constraint for the desired
joint position was relaxed with a quadratic penalty as the constraint prevented it from
reaching desired goal joint position exactly.

Table 2 lists the obtained results. The adjoint method provides a sizeable speed-up
in the OCP solving compared to using only CasADi both for the exact Hessian and
the approximate Hessian method. The adjoint method’s speed-up method was higher
for the constrained problem, matching the observation in the Table 1. As expected,
the exact Hessian method took fewer iterations to converge. However, in contrast to
the conventional wisdom in robotics, we found that the exact Hessian method was
even faster than the approximate Hessian method, when using the adjoint method.
Table 3 also compares the first and second-order methods as the weight on torque
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regularization is increased for the unconstrained dynamics setting. Higher weight
makes the problem more challenging since it incentivizes minimizing the highly
nonlinear gravity compensation torques over the horizon. For higher weights, exact
Hessian approach converges much faster than the approximate Hessian method.

Table 3: Comparing the exact Hessian method with the approximate Hessian method
for an that becomes increasingly challenging for higher torque regularization weight.
Computation times are presented in ms and the iteration count in parentheses. For
higher weights, the approximate Hessian even exceeded maximum iterations limit.

Torque regularization weight 1e-3 2e-3 5e-3 1e-2 5e-2
No second-order dyn - adjoint 8.9 ms (28) 15.0 ms (53) 19.4 ms (63) 22.9 ms (75) 57 ms (212)

Exact Hessian - adjoint 8.8 ms (17) 9.0 ms (18) 13.8 ms (28) 15.8 ms (32) 16.7 ms (32)

Comparison with a general purpose solver: Not to belabor the point that
structure-exploiting solvers are fast, we now compare Fatrop with CasADi-IPOPT
on the point-to-point motion OCP in unconstrained setting with a torque regulariza-
tion weight of 1e-3. CasADi-IPOPT with default settings takes about 5.5 seconds
(625x more expensive than Fatrop-Adjoint method). Switching to using purely
SX CasADi expressions brings the computation time down to 156 ms (18x more
expensive). This high cost is due to a combination of IPOPT being slow as well
as dynamics functions not being code-generated and compiled. Because CasADi
code-generates OCPs without modularity, this resulted in C-files larger than 100
MB making their compilation infeasible. Manually installing the non-default linear
solvers like MA57 [62] can further improve IPOPT’s performance, however Riccati
recursion has been found to be over 10x faster than MA57 as well [16].

8 Discussion

The 0.5 ms computation time per OCP iteration on a single CPU-core for the 7
DoF iiwa robot when using full-order dynamics and exact Hessian method and 50
horizon steps, is considerably faster than the results in existing literature [21, 32]. [21]
achieves such rates only for fewer horizon steps (30 compared to our 50 steps)
despite ignoring the second-order derivatives. This speed-up was achievable due
to the cumulative speed-ups brought about by all the three algorithms presented in
the chapter, namely the Riccati recursion used in both Fatrop’s LQR solver and
PV-early algorithm as well as the adjoint method.

The promising results obtained open up exciting possibilities of future application-
oriented research. With our second-order methods, generating complex trajectories
for a humanoid-sized robots in a few seconds instead of minutes appears to be
feasible, which will naturally be the focus of our future work. There exist several low-
hanging fruits that can be exploited to obtain further speed-ups, such as parallelizing
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the function evaluations in our multiple-shooting formulation. With parallel function
evaluation, the linear solver is likely to become the computational bottleneck and the
inherently sequential Riccati recursion is not trivially parallelizable.
Inverse dynamics versus forward dynamics: Recent works [63, 64] have explored
ID-based OCP formulations, in which case expensive constrained FD algorithms and
the adjoint method are not required. However, this approach models contact forces
as additional control inputs and the motion constraints as OCP constraints, making
function evaluations cheaper at the expense of more expensive Riccati recursion due
to a larger KKT system. With Riccati recursion being more difficult to parallelize
than function evaluation, it is unclear if using ID is overall a better choice and
requires further investigation.
Limitations: Some limitations of the current approach include that we rely on
CasADi’s C-code generation capabilities for evaluating the derivatives efficiently.
For larger robots like humanoids, this leads to large code-generated files of about 100
MB, which are prohibitively time-consuming to compile and also suffer from reduced
efficiency of the compiled code. Therefore a recursive implementation of the Hessian
computation similarly to the dynamics derivatives implementation in C++ like in
Pinocchio can reduce the compilation time or even eliminate this inconvenient step.
We assumed linear independence of the motion constraints, which can be relaxed
using the proximal algorithms explored in [49], which we will be our future work.

9 Conclusions

We derived three state-of-the-art algorithms for efficiently solving whole-body
robot OCPs, pertaining to solving the OCP’s KKT system, computing constrained
dynamics and differentiating the dynamics functions. Each of these algorithms can
be used stand-alone in different applications. Implementing them efficiently and
combining them together provides a particularly efficient robot trajectory optimiza-
tion framework due to the cumulative benefits. The adjoint method provided over
1.5x speed-up in unconstrained setting and over 2x in constrained setting compared
to CasADi for differentiating Kuka LBR iiwa’s dynamics. This speed-up appears
to make the exact Hessians competitive with the first order dynamics approxima-
tions, which is contrary to the conventional wisdom in robotics. Since exact Hessian
methods often converge more reliably and in fewer iterations than inexact Hessian
methods for challenging NLPs, as was also confirmed in our results, our contribution
encourages their usage for robot TO.

Compared to existing structure-exploiting OCP solvers, Fatrop provides state-of-
the-art generality (by supporting equality/inequality constraints that are both stage-
wise and terminal), constraint-handling (its nonlinear interior point method ensuring
constraint satisfaction), reliability (exact Hessian and it implements most of IPOPT’s
advanced globalization strategies) and speed (fast computation timings due to its
efficient BLASFEO implementation of the LQR solver). This chapter, by combining
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Fatrop and efficient dynamics and exact Hessian computation, offers a promising
framework to unlock fast robot trajectory optimization applications in challenging
tasks for high-dimensional robots like quadrupeds and humanoids. Such applications
will naturally be the focus of our future work along with overcoming some limitations
discussed in the previous section.
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