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A Weighted Method for Fast Resolution of Strictly
Hierarchical Robot Task Specifications using Exact

Penalty Functions
Ajay Suresha Sathya1, Goele Pipeleers1, Wilm Decré1 and Jan Swevers1

Abstract—Extensive work has been done on efficiently resolv-
ing hierarchical robot task specifications that minimize the `-
2 norm of linear constraint violations, but not for `-1 norm,
in which there has recently been growing interest for sparse
control. Both approaches require solving a cascade of quadratic
programs (QP) or linear programs (LP). In this letter, we
introduce alternate and more efficient approaches to hierarchical
`-1 norm minimization by formulating it as a single LP that can
be solved by any off-the-shelf solver. The first approach is a
recursive method that transforms the lexicographic LP (LLP)
into a single objective problem using Lagrangian duality. The
second approach, which forms the main focus of this letter, is
a weighted method based on the exact penalty method, that is
equivalent to the original LLP for a well chosen set of weights.
We propose methods to compute and adapt these weights.
The algorithms were applied on an interesting dual arm robot
task. We discuss and benchmark the computational efficiency
of these methods. Simplicity of the weighted method makes
it a promising approach for tackling challenging prioritized
robot control problems involving a control horizon or nonlinear
constraints. Within this letter, we take the first step towards
that goal by demonstrating the efficacy of the weighted method
on a simpler instantaneous robot control problem with linear
constraints.

Index Terms—Optimization and Optimal Control; Redundant
Robots; Whole-Body Motion Planning and Control

I. INTRODUCTION

CONSTRAINT-BASED task specifications are a popular
way to specify continuous robot motion and estimation

tasks [1], [2]. They are composable and allow a programmer
to specify a set of tasks to be achieved simultaneously to
fully utilize any redundant degrees of freedom present in a
robot. Various algorithms have been developed over the years
to resolve these tasks into the desired robot control input
space of either the joint velocities or accelerations [3], [4],
[5]. These different task objectives may conflict with each
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other and demand a strategy for conflict resolution. A common
approach is to assign strict priorities, when achieving a task
with higher priority is more important than a task of lower
priority and a trade-off is either not desirable or difficult
to model. For example, maintaining balance of a humanoid
robot is more important than collision avoidance of an arm
which could in turn be more important than picking up a
glass of water. Therefore, an algorithm that can resolve such
a hierarchical task specification is highly desirable and has
received a considerable amount of attention.

Resolving equality constrained tasks is straight-forward
using the Pseudo-inverse and projection onto the nullspace
of higher priority tasks [6]. This becomes significantly more
complex in the presence of inequality constraints and requires
an iterative solver because it is not always possible to predict
the optimal active-set of the constraints. There are several
approaches in the literature dedicated to solving this problem.

The simplest approach is to have only two priority levels
with hard constraints and weighted soft constraints that are
quadratic penalties of constraint violations [5]. It results in
a single quadratic program (QP) which can be efficiently
solved by leveraging mature open-source or commercial QP
solvers.The more complex sequential method [7] supports an
arbitrary number of priority levels, by solving a cascade of
QPs at every priority level. This approach can get computa-
tionally expensive when there are several layers of priority
and many inequality constraints. A state-of-the-art method
for this approach that addresses this computational issue is
the hierachical quadratic programming (HQP) algorithm [8].
Here, the inequality constraints are solved using an active-set
algorithm implemented on top of a highly efficent stack-of-
tasks implementation for equality constrained problems using
hierarchical complete orthogonal decomposition (HCOD). It
is found to be computationally efficient in practice when
appropriately warm started.

There has been a recent interest in using sparsity-inducing
`-1 norm penalties [9], [10], [11], [12] because of its ten-
dency to produce parsimonious control policies where, only
a subset of the joints are actuated. This is found to result in
more intuitive motions [12]. This is in constrast to the QP
approaches described in the previous paragraph that minimize
the squared `-2 penalties which typically actuates a large
number of the joints. In [9] and [10], the `-1 penalty on the
constraint violations is formulated in a specific way that leads
to sparse control actions when the resulting linear program
(LP) is solved using a particular simplex solver. However, it
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supports only a single level of hierarchy. A more rigorous
approach towards sparse control policies is taken in [11], [12]
using Lasso regularization. The `-1 penalty is applied only
at the lowest priority level for regularization while quadratic
objectives are minimized at higher levels using the traditional
approach of solving a cascade of QPs. These sequential
approaches also do not scale well with higher number of levels
and there has been no method proposed in the literature that
is similar in computational efficiency to the HQP method for
`-1 penalties.

The methods in the literature predominantly deal with
instantaneous control problems with linear constraints. Com-
putationally efficient methods like the HQP solver are com-
plex and extending them to solve for prioritized objectives
for model predictive control (MPC) or nonlinear constraints
is conceptually challenging. Moreover, the HQP solver is
efficient only when the optimal active-set does not change
significantly between iterations. It is thus unlikely to scale well
to the larger MPC problems where this assumption does not
hold. HQP solver would be unable to switch to an interior point
method (IPM), if IPM was more suitable for such an optimal
control problem. In this letter, we explore a different strategy
by minimizing the weighted `-1 norm penalties on constraint
violations that results in a simple and elegant formulation
that is also computationally efficient. We first motivate the
reason for this approach through an intuitive graphical example
presented in the next subsection.

A. Motivating example

Consider a single dimensional problem with two conflicting
equality constraints. Quadratic penalties and `-1 norm penal-
ties on the violation of each constraint are plotted in the fig. 1.
The higher priority constraint is given a higher weight to
reflect the preference. In the weighted least squares problem,
the minimizer of the weighted sum is not the minimizer of
the higher priority constraint. Even in this simple problem
the weight on the higher priority constraint would have to be
infinitely higher than lower priority weight for the combined
objective function to have a minima that satisfies priorities
strictly and any real choice of weights cannot avoid some
degree of violation of priority. This is because the gradient of
the quadratic penalty vanishes to zero at the minima. However,
for a non-smooth penalty function such as the `-1 norm, the
minima of the combined objective function is clearly identical
to the minima of the higher priority constraint even when
the higher priority constraint has a slightly higher and finite
weight. Thus, a constraint can be made to behave as a hard
constraint by using a non-smooth penalty function with a
high enough weight. This is also known as the exact penalty
method in the optimization literature [13]. In fact, any p-norm
can be used as the exact penalty. But `-1 and `-∞ norms
remain a popular choice as they can be reformulated into
smooth objectives with the addition of only linear constraints.
Choosing `-2 norm results in a second-order conic constraint
during smooth reformulation which is harder to solve than a
linear constraint. In this letter we investigate the feasibility
of extending this idea to multiple priority levels by weighting
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Fig. 1: Comparison of weighted least squares and weighted
`-1 norm penalties.

the exact penalty functions high enough that the corresponding
constraints effectively behave like hard constraints with respect
to the lower priority constraints.

B. Approach and contributions

We present the first work that introduces and successfully
demonstrates the application of weighted `-1 norm penalties to
resolving hierarchical robot task specification in the robotics
literature, to the best of our knowledge. This approach retains
the simplicity of weighted least-squares method and can be
implemented in any existing control framework within hours.
For some problems such as hierarchical parsimonious control,
our approach is the only method we are aware of, that does
not need to solve more than one LP/QP at every control
instance. We contribute primarily towards the modelling of
the optimization problem and therefore retain the freedom to
choose an optimization solver that is suited for a task. Thus,
it can leverage future advances in LP/QP solvers.

There exist classical results in multi-objective optimization
literature that use the solution of the sequential method to
prove the existence of a set of equivalent weights for the `-1
norm penalties [14], [15]. Though the proof is constructive in
nature, it does not provide a recipe to compute them in practice
as it can lead to numerically large weights. Therefore we
design a tunable parameter for computing the weights that can
be either manually tuned or automatically adapted. We propose
an efficient procedure to confirm lexicographic optimality
at a given level, that is central for adapting the weights
automatically. We evaluate the accuracy of this method on a set
of challenging tasks with rank-deficient constraints. We also
discuss smoothness issues that are critical for implementating
the algorithm on a real robot.

Additionally, we introduce an algorithm to formulate the
lexicographic problem as a single linear program using the
theoretical properties of Lagrangian duality and assess its
computational performance. As our approach is based on
the exact penalty method which works well for nonlinear
programs as well, it has the potential to be generalized to solve
prioritized optimal control or MPC problems more efficiently
[16] than the existing sequential methods.
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The source code for all the algorithms presented in this
work is made available publicly at the following link to
improve the reproducibility of work presented in this letter:
https://github.com/AjSat/hqp l1

II. PROBLEM FORMULATION

The lexicographic problem formulation with the `-1 norm
penalty objectives at each level is mathematically formalized
in this section. Three different equivalent single objective op-
timization formulations are introduced, the sequential method,
a formulation based on Lagrangian duality and the weighted
method, which forms the main the focus of this paper.

A. Lexicographic problem formulation

The robot task function approach [1] contributes to time-
dependent affine equality and inequality constraints that must
be solved as a lexicographic optimization problem. We follow
a notation similar to [8], but have replaced the quadratic
objective with the `-1 penalty at each level. The problem is
formulated as follows:

lex min
x,w1,we1,..,wp,wep

{‖
[
w1 we1

]T ‖1, ..., ‖ [wp wep
]T ‖1},

(1a)
subject to Ae0(t)x = b0(t), A0(t)x ≤ u0(t) (1b)

Aek(t)x = bk(t) + wek, (1c)
Ak(t)x ≤ uk(t) + wk, k = 1, 2, ..., p

where x ∈ Rn is the optimization variable which is
normally chosen as joint-space velocities or accelerations.
Ak(t) ∈ Rmk×n and uk(t) ∈ Rmk define mk number of
linear inequality constraints at the kth level. These matrices
are obtained by evaluating and computing the Jacobian of the
task function at the kth priority level at time t. For k ≥ 1,
the constraints are relaxed through slack variables wk ∈ Rmk

at each level. p is the total number of relaxable priority
levels. Equality constraints and their relaxations are similarly
defined by the terms Aek(t), bk(t) and wek. The optimal
solution to the lexicographic optimization problem defined by
eq. (1), minimizes ‖

[
wk wek

]T ‖1 for all kth levels such that
‖
[
wq weq

]T ‖1 can be reduced no further without increasing
the objective at a higher priority level ‖

[
wr wer

]T ‖1, where
r < q.

1) Dropping terms for simplicity of notation: In the subse-
quent analysis, we omit the equality constraints and the time
dependency to simplify the notation. The following derivations
can be easily extended to the equality constraints as well.

2) Normalization of the constraints: We assume without
loss of generality that each row vector of Ak(t) in eq. (1c)
has a unit norm. Any arbitrary affine inequality constraint can
be transformed into this form by multiplying each row of
unnormalized Ak and uk with the appropriate factor. While
the normalization step is not essential for the algorithm, it
allows the objective at kth level ‖w∗

k‖1 to be interpreted as
the sum of the distance of the solution point x∗ from all the
constraint manifolds (halfspaces for inequalities) at the kth
priority level.

3) Smooth reformulation: The `-1 penalty functions in
eq. (1a) are non-smooth and could cause convergence issues
for many solvers. The common approach [17] to resolve this
issue is to reformulate into an equivalent problem by adding
non-negativity constraints on the slack vectors. The resulting
hierarchical linear program (HLP) is given below:

lex min
x,w1,w2,..wp

{1T1 w1, 1T2 w2, 1T3 w3...1Tp wp}, (2a)

subject to A0x ≤ u0, (2b)
Akx ≤ uk + wk, wk ≥ 0,

k = 1, 2, ..., p (2c)

where 1k ∈ Rmk refers to a column vector with each
element equal to 1.

B. Sequential method

A natural approach to solve the HLP is to solve an LP
at each level in a decreasing order of priority similar to the
sequential QP approach[7]. While solving the LP at the ith
level, all the constraints and slack vectors from lower priority
levels j > i are ignored. The optimal objective 1Tkw∗

k for a
higher priority level k < i is already computed in a previous
step and is added as a hard constraint to ensure that a higher
priority objective does not become worse while solving the
lower levels. Let us call this method sequential linear program
(SLP). The ith optimization problem in SLP is given below:

minimize
x,w1..wi

1Ti wi (3a)

subject to A0x ≤ u0 (3b)

1Tkwk ≤ 1Tkw
∗
k k = 1, 2, ..., i− 1 (3c)

Aix ≤ ui + wi, wk ≥ 0, k = 1, 2, ..., i (3d)

C. Formulation using Lagrangian Duality

It is a common approach to use Lagrangian duality to
efficiently solve bilevel optimization problems such as min-
max problems. In this section, we introduce and extend this
idea to an arbitrary number of levels to formulate the HLP in
eq. (2) as a single-objective LP. Consider the first optimization
problem in SLP, where only the first relaxable priority level
is considered. The corresponding dual problem [17] is given
below.

maximize
λ1,0,λ1,1

− λT1,0u0 − λT1,1u1 (4a)

subject to AT0 λ1,0 +AT1 λ1,1 = 0, (4b)
0 ≤ λ1,1 ≤ 1i, 0 ≤ λ1,0 (4c)

Let the objective functions of the dual problem be denoted
as d1(λ1,0, λ1,1). According to duality theory, the dual func-
tion is always a lower bound of the primal function at any
primal feasible point. For an LP strong duality always holds,
which implies the following relations:

d1(λ1,0, λ1,1) ≤ d1(λ
∗
1,0, λ

∗
1,1) = 1T1 w

∗
1 ≤ 1T1 w1 (5)

https://github.com/AjSat/hqp_l1
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Now, considering the second optimization problem of SLP
that solves for the second level of relaxable constraints, we
replace 1T1 w∗

1 with d1(λ1,0, λ1,1) in the constraint eq. (3c) of
the problem and add the constraints of the dual problem. This
new problem would take the form below.

minimize
x,w1,w2,λ1,0,λ1,1

1T2 w2 (6a)

subject to A0x ≤ u0, (6b)
A1x ≤ u1 + w1, A2x ≤ u2 + w2, (6c)

1T1 w1 ≤ −λT1,0u0 − λT1,1u1 (6d)

AT0 λ1,0 +AT1 λ1,1 = 0, (6e)
w1, w2, λ1,0 ≥ 0 0 ≤ λ1,1 ≤ 11 (6f)

There are two important observations to be made in the
above problem:

First, duality “trick” is employed in the constraint in eq. (6d)
by enforcing the reverse of the inequality in eq. (5). The only
feasible solution to this constraint is where the duality gap
zero and 1T1 w1 is equal to the optima of the first SLP step. So
solving this problem would also compute the higher priority
objective 1T1 w1 while computing the optimal 1T2 w2.

Second, the dual variables from the first SLP problem are
part of the primal variables now and that the new problem
eq. (6) is still an LP. This implies that the dual of this problem
can be computed and a similar duality trick can be enforced
on the next level. The process can be continued recursively till
the last step of the sequential method and all the constraints in
eq. (3c) are reformulated with the corresponding dual functions
as the upper bound. This results in a larger, but a single
optimization problem with a lot of sparsity that can exploited
by state-of-the-art LP solvers.

It is cumbersome to derive the optimization problems by
hand for even three priority levels. Therefore, we implemented
this algorithm using an automatic dualizer [18] provided by the
YALMIP toolbox. The efficacy of this method is investigated
in the section V. Though we do not pursue this direction in
this letter, we additionally note that this idea is not restricted
to `-1 penalty. When applied to `-2 penalties, depending on
whether the `-2 norm or the squared `-2 norm is used as
the objective, the duality trick would lead to either a second
order conic program (SOCP) or a quadratically-constrained
quadratic program (QCQP) formulation of the lexicographic
problem.

D. Weighted Formulation
We now introduce the weighted formulation for solving the

HLP in eq. (2) as follows

minimize
x,w1,w2,..wp

ε11T1 w1 + ε21T2 w2 + ...+ εp1Tp wp (7a)

subject to A0x ≤ u0, Akx ≤ uk + wk, (7b)
wk ≥ 0, k = 1, 2, ..., p (7c)

ε =
[
ε1 ε2, ... εp

]T
, ε ∈ Rp+ is the vector of the

weights for each priority level whose numerical values de-
termine whether this formulation returns a lexicographically

optimal solution. [14], [15] show that there exists a finite
number M ≥ 1 such that if the weights are chosen to satisfy
εi−1 ≥Mεi, the weighted method returns a lexicographically
optimal solution. But M depends on the problem at hand and
cannot be fixed in advance as it is always possible to derive
pathological cases where the weighted method would fail for
any given value of M. In the next section, we present some
intuitive procedures to compute and adapt these weights vector
ε. The weighted linear program (WLP) will be referred to as
WLP from now.

III. COMPUTATION OF WEIGHTS FOR WLP

A. Basic heuristic

We first present a simple heuristic that computes weights ε
such that the weighted gradient of a constraint at a level has a
greater `-2 norm than the cumulative sum of the norm of the
weighted gradients of all the lower priority levels. Then all
the lower priority constraints combined would, by themselves,
not be able to cause the violation of the constraint at higher
level.

εi ≥
p∑

k=i+1

εk.

mk∑
j=0

‖Akj‖ (8)

where Akj is the jth row of the matrix Ak. Because we
assumed that each row of Ak has a unit norm in the subsection
II-A, the equation above to simplifies to the formula below:

εi = γi

p∑
k=i+1

εk.mk (9)

Where γi ≥ 1 is a tunable constant that can be intuitively
understood as the relative weight on the ith level. Higher
the value of γi, higher is the weight on the constraints at
ith level relative to all the constraints at lower levels. The
analysis behind this heuristic ignores all the constraints at a
higher or the same priority level. Lower priority constraints
can cause violation of a given constraint with the help of a
higher priority constraint. Thus, the weights computed using
this tunable parameter are a heuristic and are not guaranteed
to provide the correct solution. Effectively, the problem is now
transformed from finding absolute weights to that of finding
relative weights whose meaning is preserved even when the
problem size and the number of constraints change.

B. Adaptive method

When there are few priority levels, it might be practically
sufficient to simply select a high value of γi, i = 1, ..., p
to successfully compute the lexicographic solutions. But this
idea is not viable for a high number of priority levels, as
high relative weights would lead to numerical issues. To scale
better with the number of levels and to avoid the issue of
tuning, an adaptive method is desirable that can detect failure
of lexicographic optimality and increase the corresponding
relative weights accordingly.

When constraints are violated at ith level, one can check
if they are caused by lower priority constraints by resetting
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all the weights of lower levels εk = 0, k = i + 1, ..., p.
The original solution is used to warm start and solve the new
problem very efficiently. Often, when hierarchy is not violated,
this simply amounts to the solver verifying optimality of the
original solution despite the change in weights. If a better
objective 1Ti w

∗
i (without worsening a higher level objective)

is found by the verification step, this implies a failure of
lexicographic optimality had been caused by the lower levels.
The weight εi is increased and weights εk, k = i+1, ..., p are
restored to their original values. The problem is solved again
iteratively increasing εi till the constraint violation at ith level
matches the value found when all lower priority constraints
had zero weight. Because of the continuous nature of a robot
control problem, this step is implemented only when the active
set of constraints change or when there is a jump in constraint
violations to confirm that the change was lexicographically
optimal to save computations.

IV. UNIQUENESS AND SMOOTHNESS OF THE SOLUTION

The solution to the lexicographic problem is not unique
when the constraints underdetermine the solution both for
our `-1 formulation as well the quadratic penalty formulation
in HQP. This occurs when the total rank of all the active
constraints is less than the number of decision variables.
In this scenario the solver is free to choose any solution
in the nullspace of all the constraints that does not violate
the hard constraints. This can result in an undesirable drift
in the joint velocities or accelerations. To prevent this, a
Tikhonov regularization term is added in the HQP algorithm
at the lowest priority level which makes the optimization
problem at the final step strongly convex with a unique global
minimizer. Following a similar approach, a natural option for
regularization in WLP or SLP is to add a lowest priority
equality constraint x = 0. This results in the sparsity-inducing
`-1 norm regularization at the lowest priority level similar to
the approach in [12] and [11]. The resulting problems, which
we call WLP-`-1 and SLP-`-1 still remain a linear program.

It is also possible to alter the objective function of the last
level to implement quadratic regularization in our algorithm.
To do so, the objective function of only the final problem
in the sequential method in the eq. (3) is replaced with
1
2w

T
p Qwp instead of 1Tp wp, where Q is a symmetric positive

definite weighting matrix. It is normally chosen to be the
identity matrix or the joint space inertia matrix if a desired
physical quantity such as the kinetic energy is to be minimized
over the nullspace of the active tasks. Similarly, the objective
function of the weighted method in the eq. (7) is modified as
ε11T1 w1+ε21T2 w2+ ...+εp−11Tp−1wp−1+

1
2εpw

T
p Qwp instead

of ε11T1 w1+ ε21T2 w2+ ...+ εp1Tp wp−1. This changes the final
step of SLP and the whole WLP into strongly convex QPs
with a unique minima. Please note that such a modification
of SLP or WLP is allowed only at the last priority level
because this objective is not required to be a non-smooth
exact penalty function as there are no lower priority levels
with respect to which the regularization needs to behave like
a hard constraint. While this option makes the solution unique,
it also has the disadvantage of solving a QP instead of an LP.

Let this regularized problem be called SLP-`-2 and WLP-`-2
respectively.

With `-1 regularization, the optimization problem does not
always have a unique minimizer. This can occur when there
exists a vector in the nullspace of all the active constraints, that
is orthogonal to the subdifferential set of the `-1 norm function
at the minima as has been shown in an intuitive example
in [7]. At this point, small perturbations in the parameters
Ai(t) and bi(t) can result in choosing a different vertex on
the simplex of the LP even if the parameters Ai(t) and
bi(t) vary continuously with time. This issue is present in
all approaches that use lasso regularization [12], [11]. One
solution to mitigate this issue is to combine both the `-1 and
the quadratic regularizations at each level to get a strongly
convex problem. The magnitude of Q would determine the
smoothness of transition from one vertex of the simplex to
another, but might affect sparsity. So we take a different
approach to deal with discontinuity that addresses additionally
other sources of discontinuities that are also common to HQP
algorithm, which occur when the constraint matrices become
singular near kinematic singularities or when the optimization
problem itself is changed during task switching or priority
switching. To address all these situations, we follow the simple
idea of enforcing continuity on the control actions by bounding
its time derivative as a hard constraint. Let xprev be the
decision variable from the previous control instance which is
retained in memory and used as a parameter in the following
constraint below, that is added to the problem eq. (7).

ẋminTs ≤ (x− xprev) ≤ ẋmaxTs (10)

where ẋmin and ẋmax are the desired lower and upper
bounds on the rate of change of the decision variables and
Ts is the sampling time of the controller.

V. EXPERIMENTS AND DISCUSSIONS

A. Didactical example

We illustrate and compare the control policies from WLP-`-
1 with HQP [8] on a simple problem with conflicting Cartesian
velocity constraints on the end-effector a KUKA robot arm.
The first set of constraints called S1 are ẋee = 0.2 and
ẏee = 0.2, where ẋee and ẏee are the end effector velocities
in the x and y directions of the base frame of the robot. The
second set S2 is ẋee = −0.1 and ẏee = −0.1 and the third
set S3, ẋee = −0.05 and ẏee = −0.05. The obtained motions
are plotted in fig. 2. At the start, the priority order was chosen
to be S1 > S2 > S3. Because of hard acceleration bounds,
both algorithms take some time to reach end-effector velocities
that satisfy the S1 constraints which has the highest priority.
After 1 second, the priorities were switched to S2 > S1 > S3
and both WLP and HQP satisfy S2 that then has the highest
priority. Both algorithms are similar when resolving conflicts
between levels. After two seconds, S1 and S2 were assigned
to the same level with the priority order S1,S2 > S3 causing a
conflict within the same level. The choice of norm now affects
the solutions. In the HQP formulation, the robot end-effector
attains a velocity equal to the average of S1 and S2 constraints
because any deviation from the average increases the `-2 norm
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of the objective at the highest level. In contrast, the `-1 norm
cost is the sum of violations at the level S1 and S2 which
remains constant for the range of motions between 0.2 m/s
and -0.1 m/s. This allows a greater degree of flexibility for
the solver to optimize a lower level constraint which is why
S3 is satisfied at this stage. This non-uniqueness of optimal
constraint violations w∗ during conflicts at the same level
is an important difference between `-1 norm and `-2 norm
methods. This provides additional flexibility to optimize lower
level constraints. After 3 seconds only the set ẋee = 1.0 and
ẏee = 0 are applied, causing the robot arm to extend in the x
direction to reach joint states close to kinematic singularities.
Continuously varying joint velocities are computed despite the
proximity to singularities as well as the constraint on ẏee is
satisfied. WLP-`-1 is also found to compute sparser solutions
due to `-1 regularization which is not possible using the HQP
algorithm.
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Fig. 2: Didactical example comparing the behaviour of HLP
vs HQP formulation.

B. Accuracy of the weighted formulation

In this subsection, we assess how accurately the methods
developed in section III compute the correct weights that
enable the weighted formulation to return the lexicographi-
cally optimal solution, with the SLP method serving as the
ground truth. Pathological cases where the weighted method
fails involve constraints that are almost linearly dependent.
Thus 300 rank-deficient random tasks were generated with
25 decision variables and 25 equality constraints of rank 15
and 25 inequality constraints of rank 15 and were distributed

TABLE I: Accuracy of the weighted methods with γ in
paranthesis and computation time in square brackets

Levels WLP-`-2f WLP-`-2a SLP
2 1.0(0.2)[0.029s] 1.0(0.2) [0.028s] [0.024s]
3 1.0 (500) [0.040s] 1.0(0.2) [0.046s] [0.041s]
4 1.0 (500) [0.050s] 1.0(0.2)[0.054s] [0.057s]
5 0.9567 (45) [0.054s] 1.0(0.2)[0.060s] [0.071s]
6 0.9067 (10) [0.057s] 1.0(0.2)[0.064s] [0.083s]
7 0.6867 (5) [0.061s] 1.0(0.2) [0.069s] [0.089s]
8 0.54 (3) [0.065s] 1.0(0.2)[0.069s] [0.109s]
9 0.1733 (1) [0.070s] 0.997(0.2)[0.074s] [0.097s]
10 0.1467 (1.0) [0.069s] 0.997(0.2)[0.075s] [0.113s]

uniformly into a number of levels. The remainder of tasks
when not perfectly divisible is included in the last level.
The fraction of the cases for which the weighted method
successfully returned a correct solution for both the basic
heuristic (WLP-`-2f) and the adaptive method (WLP-`2a) is
presented in the table I. The parenthesis contain the default
values the weights γis defined in eq. (9) before adaptation
(fixed in the case of WLP-`2a). The square brackets show
the average computation time of the solver in each case.
Please note that significantly lower time would be needed
due to warm-starting when implemented for robot control. The
simulations were performed using QPOases[19] on a system
with Intel i7-8850H CPU @ 2.60GHz running an Ubuntu
18.04 operating system

For problems with two priority levels (including the hard
priority level), both the weight computations return the same
optimal constraint violations, as the problems are identical to
the sequential formulation. Ideally an infinitely high value of
γis would ensure lexicographic optimality for more than 2 lev-
els. Up to 5 levels (which includes most robotics applications),
simply fixing all the γis at a high value provides excellent
accuracy. This was however, not numerically feasible for more
than 5 levels. The adaptive method, which selectively updates
weights only at those levels where the lexicographic optimality
is violated, clearly scales better numerically to higher number
of levels and computed a correct solution with nearly a hun-
dred percent success rate. Thus, we successfully demonstrate
that the weighted method combined with adaptation (for high
number of priority levels) can reliably return the same solution
as a sequential method even on a challenging example with
many degenerate constraints.

C. Comparison between the sequential and the duality trick
formulations

The SLP and the duality trick (DT) formulations are equiv-
alent formulations and return identical solutions. The most
relevant comparison between them would be on the basis
of computation times. The benchmarking was done on 300
randomly generated tasks with 20 decision variables and 20
inequality constraints (of rank 10) and 20 equality constraints
with rank 10 similarly to the previous subsection. The sim-
ulations were performed on MATLAB using Yalmip toolbox
(because the toolbox provides an automatic dualizer [18]) and
Gurobi LP solver. The results are displayed in fig. 3. Despite
its theoretical elegance, the DT method, while being slightly
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Fig. 3: Comparison of computation times between the sequen-
tial (blue graph) and the duality trick formulations (orange
graph).

faster than the sequential method for upto 5 levels, is found
to not scale well to a higher number of levels. This can be
explained by a high-level complexity analysis of DT. In the
recursive formulation of the DT method, every primal variable
contributes a constraint to its dual problem, which then gets
added as a primal constraint at the next priority level. This
primal constraint in turn leads to a dual variable, which itself
becomes an additional primal variable at the next level. So,
the problem size (in the number of decision variables) grows
exponentially by atleast doubling for every two additional
priority levels. Yalmip’s dualization is also suboptimal as it is
not tailored for a lexicographic problem and does not eliminate
constraints through substitution whenever possible. A custom-
built dualizer that addresses this issue and might allow the DT
method to scale slightly better but is outside the scope of this
letter.

D. Dual arm task

In this subsection, we implement the weighted method on
a practical dual arm assembly task with 5 levels of priorities
on two Kuka iiwa manipulators that are fixed on a rotating
platform that adds an extra degree of freedom and couples
the kinematics of the two manipulators. The task involves
picking up a couple of assembly parts, that are close to each
other, in order to perform bi-manual assembly later. The stack-
of-tasks and their priorities are indicated in table II. The
problem has 17 decision variables - 15 joints and 2 progress
variables (excluding the slack terms), 46 inequality constraints
and 12 equality constraints. The WLP-`-1 using the primal
simplex solver from MOSEK and WLP-`-2 regularization
using QPOases [19] and HQP using the Lexlsi solver [20]
were implemented on this task. The robots arms reach for the
parts simultaneously resulting in conflict between the collision
avoidance constraints and the path progress variables. The
right arm, whose progress variable has lower priority stops
moving and even back-tracks along its collision-free path to
allow the left arm to progress avoiding a potential deadlock
situation that would have arisen if there were no priorities.
A video of the implementation is available in the github
repository mentioned in the Section I. The computation times
required by different solvers are shown in fig. 4.

The weighted formulations WLP-`-1 and WLP-`-2 were
atleast 4 times faster than their sequential counterparts taking

TABLE II: Stack of tasks

Priority Tasks
0 joint position, velocity and acceleration limits
1 Fix robot end effector to be vertical and collision avoidance
2 Robots stay on a preplanned collision free path
3 Left robot arm progresses on its path
4 Right robot arm progreses on its path

5 Regularization on joint velocities.
`-1 with Mosek and `-2 with QPOases

TABLE III: Comparing HQP with `-1 and `-2 regularized
WLP

Metric HQP WLP-`-1 WLP-`-2
Average number of

joints actuated 13.93 9.8299 11.629

only 55 microseconds and 350 microseconds on average.
WLP-`-1 is in particular almost 25 times faster than cascaded
QP solved using QPOases. The only solver which outper-
formed our method was the highly optimized Lexlsi [20]
solver, which is the fastest lexicographic QP solver known to
us in the literature (several times faster than the original HQP
[8] algorithm) and took about 35 microseconds on average.
Remarkably, the WLP-`-1 algorithm, which is significantly
simpler than the Lexlsi algorithm, using a general purpose
off-the-shelf LP solver from MOSEK was not much slower
and in some instances even faster than Lexlsi. However, it can
compute sparse solutions unlike Lexlsi as shown in table III.
The average number of joints indicate the degree of sparsity
achieved by the solver and the WLP-`-1 computed the sparsest
solutions as expected actuating 10 joints most of the time.
Since the task constrained 3 translational directions and 2
rotational directions for each robot, the task itself required 10
degrees of freedom and therefore the achieved sparsity was
optimal in this example.

Fig. 4: Computation time comparison between weighted and
sequential methods.
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VI. CONCLUSIONS AND FUTURE WORK

We explored different formulations for solving the hierar-
chical robot task specification problems with `-1 norm penalty
on constraint violations. All methods that use an off-the-shelf
solver use the sequential method which always provides a
lexicographically optimal solution, but requires solving an
optimization problem at every level. We showed how the
sequential method could be transformed into an equivalent
single LP using Lagrangian duality theory. However, this
method was found to scale poorly and the problem size
increased exponentially with the number of priority levels.

We introduced the weighted method which can achieve strict
task priorities by solving a single optimization problem for
a well chosen set of weights. This idea has no counterpart
with methods that use only quadratic penalties and has not
been explored before in the robotics literature to the best of
our knowledge. It can be used to implement controllers that
compute sparse policies faster than any other current methods
as they all rely on solving a cascade of optimization problems.
As the value of the weights are critical in determining the
whether the weighted method computes a lexicographically
optimal solution, we designed a simple tunable parameter that
can be manually tuned as well as adaptively computed for
a given problem. The efficacy of the weighted method was
positively confirmed on a set of challenging tasks with rank-
deficient constraints.

Regularization and smoothness aspects that are important
for deployment on a hardware were discussed and the use-
fulness of the presented algorithms were demonstrated by
implementing them for motion control in an interesting dual
arm robot task with prioritized objectives. The weighted
method was found to be remarkably fast despite its simplicity.
Though slower than the more complicated Lexlsi solver, it
can compute sparse solutions unlike the HQP methods. It is
simple enough to be implemented on any existing controller
that rely on off-the-shelf solvers within hours and still obtain
high computational efficiency. It is also a promising strategy
for extending lexicographic ordering of priorities to controllers
with nonlinear constraints and predictive horizon, as it is
based on the exact penalty method which is more generally
applicable and this will naturally be the focus of future work.
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