
Safe-Planner: A Single-Outcome Replanner for Computing Strong Cyclic
Policies in Fully Observable Non-Deterministic Domains

Vahid Mokhtari, Ajay Suresha Sathya, Nikolaos Tsiogkas, Wilm Decré

Abstract— Replanners are efficient methods for solving non-
deterministic planning problems. Despite showing good scala-
bility, existing replanners often fail to solve problems involving
a large number of misleading plans, i.e., weak plans that do not
lead to strong solutions, however, due to their minimal lengths,
are likely to be found at every replanning iteration. The poor
performance of replanners in such problems is due to their all-
outcome determinization. That is, when compiling from non-
deterministic to classical, they include all compiled classical
operators in a single deterministic domain which leads replan-
ners to continually generate misleading plans. We introduce
an offline replanner, called Safe-Planner (SP), that relies on a
single-outcome determinization to compile a non-deterministic
domain into a set of classical domains, and ordering heuristics
for ranking the obtained classical domains. The proposed single-
outcome determinization and the heuristics allow for alternating
between different classical domains. We show experimentally
that this approach can allow SP to avoid generating misleading
plans but to generate weak plans that directly lead to strong
solutions. The experiments show that SP outperforms state-of-
the-art non-deterministic solvers by solving a broader range of
problems. We also validate the practical utility of SP in real-
world non-deterministic robotic tasks.

I. INTRODUCTION

AI planning is the reasoning side of acting. It is a core
deliberation function for intelligent robots to increase their
autonomy and flexibility through the construction of se-
quences of actions for achieving some prestated objectives
[1]. Major progress has been achieved in developing classi-
cal AI planning algorithms, however, these approaches are
restricted to the hypothesis of deterministic actions: an appli-
cable action in a state results in a single new state, thus the
world evolves along a single fully predictable path. A more
realistic assumption must take into account that the effect of
actions can not be completely foreseen and the environment
can change in unpredictable ways, however, an agent is able
to observe its outcome. As an example, let us consider a
dualarm manipulator in a non-deterministic task involving
picking objects from a table and putting them in a box in a
certain orientation (see Figure 1). The orientation of objects
on the table are not known to the robot. In order to rotate
objects in a certain orientation, the robot needs to observe
the objects at runtime. So, a strong solution for the robot
must be contingent on observing the orientation of objects.

We address Fully Observable Non-Deterministic (FOND)
planning problems as an attempt at modeling uncertainty into
the outcomes of actions [2]. Solutions to FOND problems are

All authors are with the Department of Mechanical Engineering, Division
Robotics, Automation and Mechatronics (RAM), and Flanders Make, KU
Leuven, Belgium. Email: mokhtari.vahid@kuleuven.be

Fig. 1: A dualarm YuMi manipulator puts two objects into a box in an
upward orientation. A strong solution, encoding contingencies, for the robot
involves picking up objects; carrying the objects to a camera; checking the
orientation of the objects; rotating the objects or not, depending on their
observed orientation; and putting them into the box

policies, i.e., mappings from states to actions, that reach a
goal state when executed from the initial state of problems.
The execution of a policy may result in more than one
sequence of states. Therefore, solutions to FOND planning
problems are characterized with respect to the different pos-
sible executions of plans. In [3] three classes of solutions are
presented: (i) weak solutions having a chance to achieve the
goal; (ii) strong solutions guaranteed to achieve the goal; and
(iii) strong cyclic solutions having a possibility to terminate
and if they terminate, guaranteed to achieve the goal.

Strong cyclic solutions have become an important concept
in FOND planning as they deal with deadends, i.e., unsolv-
able states where replanning is not possible. As a result,
notable FOND planning techniques have been developed
over the past years including planners relying on classical
algorithms (referred to as replanners) such as PRP [4], FIP
[5], and NDP [6], and non-classical planners relying on
binary decision diagrams (BDDs) such as MBP [3], and SAT
planning such as FOND-SAT [7].

Replanners compute a weak policy that does not address
all non-deterministic reachable states. During the execution
if an unpredicted state is reached, they compute a new policy
starting from the unpredicted state. They repeat this process
until every possible execution of the policy achieves the goal.
Replanners have been shown to scale up best to existing
FOND benchmarks from the past International Planning
Competitions (IPC) [4], [5]. However, in [7], authors show
that most of the FOND benchmarks from IPC do not pose a
big challenge to replanners, except for large problems. They
introduce domains that give rise to an exponential number
of misleading plans, i.e., weak plans involving unsolvable
states that do not lead to strong policies, however, due to their

minimal lengths, are likely to be found by replanners, and
show existing replanners tend to break on these problems.

Replanners strongly rely on their adopted determinization
strategy and the initial weak plan that they generate and
refine toward a final strong solution. There are two known
methods for compiling from non-deterministic to determin-
istic domains [8]: (i) single-outcome which selects and in-
cludes only one outcome for each non-deterministic operator
in the deterministic domain, and (ii) all-outcome which
selects and includes every outcome as a distinct operator in
the deterministic domain. All-outcome replanners compile a
non-deterministic domain into a single deterministic domain,
leading to continually generating misleading plans (in the
presence of such plans in a FOND problem). Single-outcome
replanners, by contrast, compile a non-deterministic domain
into a set of deterministic domains which allow to compute
varying weak plans that some of them might directly lead to
full strong policies.

We present Safe-Planner (SP), an offline replanner moti-
vated by NDP2 [9], that makes the following contribution:
SP adopts a single-outcome determinization to solve FOND
problems involving misleading plans. SP generates a set
of single-outcome deterministic domains from a non-deter-
ministic domain and ranks them according to an ordering
heuristic, e.g., on the number of planning operators’ effects.
In order not to lose the completeness, SP also includes all-
outcome determinization in the set of compiled domains. We
show experimentally this determinization strategy allows SP
to compute weak plans that can directly lead to strong poli-
cies in problems involving misleading plans. SP is provably
shown to be sound and complete and its code is publicly pro-
vided at: https://github.com/mokhtarivahid/safe-planner.

SP adopts a similar strategy of NDP2 in solving FOND
problems, i.e., in dealing with unsolvable states and comput-
ing weak plans. SP integrates off-the-shelf classical planners
for its internal reasoning without any modification. When
deadends are identified during FOND planning, SP modifies
a planning problem to prevent a classical planner from
finding weak plans involving actions that lead to deadends.
SP also adopts a multiprocessing approach; that is, SP
simultaneously calls different solvers to make weak plans and
as soon as one solver finds a plan, it terminates other solvers,
thus exploiting the strength of each individual planner in
solving problems, e.g., heuristic state space planners have
been considered stronger on many non-optimal planning
problems and SAT planners usually give optimality guar-
antees.

We evaluate the performance of SP in a set of existing
FOND benchmarks from the past IPCs and literature. We
compare our results to PRP and FOND-SAT, as well as the
basic algorithm of NDP2, and show that SP outperforms
these FOND solvers, particularly in the introduced domains
in [7] involving a large number of misleading plans. The ex-
periments show the adopted single-outcome determinization
can have a remarkable impact on replanners’ performance.
We also present successful integrations of SP into simulated
and real robot applications in non-deterministic tasks.

II. RELATED WORK

FF-Replan [8] is an early replanner that uses a classical
planner for reasoning. FF-Replan is a reactive online plan-
ning algorithm that generates all-outcomes determinization
of a non-deterministic domain and using the classical planner
FF [10] makes a weak policy to a problem. If the execution
of the weak policy fails in an unexpected state in the non-
deterministic environment, FF is reinvoked to make a new
weak policy from the failed state. FF-Replan repeats this
procedure until a goal state is reached. FF-Replan has been
demonstrated to be very effective in many non-deterministic
planning problems, however, it does not generate strong
policies, and is hence oblivious to getting stuck in deadends.

RFF [11] and NDP [6] are two offline replanners that
iteratively expand an initial plan to generate a robust policy
to a problem. RFF, the winner of the probabilistic track of
the 6th international planning competition (IPC2008), com-
putes an initial weak policy by solving the all-outcome
determinization of a problem using FF and then iteratively
improves the robustness of the policy by finding a failed
state in the non-deterministic environment and replanning
from that failed state to a goal state. RFF terminates as soon
as the probability to reach some failed state from the initial
state is less than a threshold. RFF does not guarantee to
avoid deadends, hence the generated policies are not strong
solutions. A similar idea is present in NDP, however, during
improving the robustness of a policy, NDP ignores any
probabilities leading to deadends and thus produces strong
cyclic solutions. The same group also presents NDP2 [9],
an extended version of NDP with some major improve-
ments. SP implements an NDP2 strong cyclic planning algo-
rithm that relies on a single-outcome determinization leading
to avoid generating misleading plans, and thus showing an
improved performance.

FIP [5] is a customized FF-replanner which introduces
some optimizations into a basic algorithm inspired by NDP.
When searching for a weak plan, FIP directly removes state-
action pairs that lead to deadends from the search tree, and
stops the search when a solved state is revisited. FIP also
introduces a goal alternative heuristic. That is, to recover
from a failed state, FIP first attempts to find a plan for
the intended effect of that failed state before replanning to
the overall goal of the problem. Despite showing a good
performance, FIP faces the same limitation on dealing with
misleading plans due to its all-outcome determinization.

PRP [4] is an all-outcome replanner to compute strong
cyclic plans. Instead of storing explicit state-action pairs,
PRP stores a mapping of partial states to actions. A partial
state is a regression from the goal to an action, containing
only the relevant portion of an intended complete state. PRP
detects deadends, by a fast but incomplete verification algo-
rithm, in the delete relaxation of all-outcome deterministic
planning, and computes a minimal partial state for each
detected deadend state. PRP then, rather than backtracking,
resets the policy and starts the computation over with the
knowledge of deadend state-action pairs to restrict the ex-

pansion of such nodes. PRP shows to scale up best among
the existing replanners, however it faces similar limitations
on dealing with misleading plans.

FOND-SAT [7] introduces a compact SAT formulation for
FOND planning. It relies on CNF encodings of atoms and
non-deterministic actions of a FOND problem indexed by
controller states, and running a SAT-solver over these encod-
ings. FOND-SAT produces compact policies from a satisfy-
ing truth assignment of the problem. It performs well in prob-
lems involving many misleading plans where the problems
are not too large. However, the challenge for FOND-SAT
still remains at scaling up to problem size and policy size.

MBP [3] is one of the best known strong cyclic planners
that formulates planning as model-checking. MBP encodes a
domain description into a BDD-based representation which
allows a compact representation of large sets of states. MBP
then implements a wide range of algorithms, e.g., weak,
strong, strong cyclic, conformant, contingent and partial
observability, that could operate on top of this representation.
The inherent weakness of MBP is that it does not exploit any
heuristics used as in classical planning and has to search a
very large state space in most planning problems, and hence
does not scale up to problems of large sizes.

III. FOND PLANNING PROBLEMS

We present a formalism for modeling FOND planning
problems which is equivalent to the PDDL representation
with “oneof” clauses [12].

A non-deterministic planning domain is described by a
pair, D = (L,O), where L is a first-order language that has
a finite number of predicate symbols and constant symbols
to represent various properties of the world and O is a set
of non-deterministic planning operators (as follows).

Every non-deterministic planning operator o ∈ O is
specified by a tuple, (h, P,E), where h is the operator’s head,
a functional expression of the form n(x1, . . . , xk) in which
n is the name and x1, . . . , xk are the variables appearing
anywhere in o, P is the precondition of o, a set of literals
that must be proved in a world state in order for o to be
applicable in that state, and E = {e1, . . . , em} is a set of
non-deterministic effects of o such that each ei is a set of
literals specifying the changes on a state effected by o. The
effects of o are mutually exclusive, that is, only one effect
happens at a time: Probability(ei ∧ ej) = 0 for all pairs of
integers i, j ∈ {1, . . . ,m} with i 6= j.

The negative and positive preconditions of an operator are
denoted as P− and P+. The negative effect, e−i , and the
positive effect, e+i , are similarly defined for every ei ∈ E.

A state is a set of ground predicates of L that represents
all properties of the world. The set of all possible states of
the world is denoted by S ⊆ 2{all ground atoms of L}.

An action a = (n(c1, . . . , ck), P, E) is a ground instance
of a non-deterministic operator (n(x1, . . . , xk), P, E) ∈ O,
where each ci is a constant symbol of L that instantiates a
variable xi in the operator description.

In any given state s, if P+ ⊂ s and P− ∩ s = ∅, then
a is applicable to s and the result of applying a to s is a

set of states given by the following state-transition function:
γ(s, a) = {(s− e−i) ∪ e+i | ei ∈ E, 1 ≤ i ≤ m}.

The set of all possible actions, i.e., ground instances of
planning operators in O, is denoted by A.

A fully observable planning problem P for a domain D
is a tuple, P = (D, s0, g), where s0 ∈ S is the initial state,
and g is the goal, i.e., a set of propositions to be satisfied in
a goal state sg ∈ S.

A policy π is a set of pairs (s, a), where each s ∈ S is a
unique state in π and each a ∈ A is an applicable action in
s, denoted by π(s) = {a | (s, a) ∈ π, γ(s, a) 6= ∅}.

Given a policy π, the set of all states reachable by follow-
ing π from s0 is denoted by Sπ ⊆ S: Sπ = {s | (s, a) ∈ π}.

The execution of a policy π starting from a state s, denoted
by Σπ(s), is a function that results in a set of terminal states:

1 function Σπ(s)
2 if π = ∅ then return {s}
3 T ← {}, Q← 〈s〉, V ← {}
4 while Q 6= ∅ do
5 s← Q.pop(), V.add(s)
6 for s′ ∈ γ(s, π(s)) s.t. s′ /∈ V do
7 if s′ ∈ Sπ then Q.add(s′)
8 else T.add(s′)
9 return T

A policy π is a solution for a problem P = (D, s0, g) if:
|Σπ(s0)| > 0, that is, there are no inescapable cycles in π
which result in zero terminal states; and the execution of π
eventually terminates in a goal state sg such that g ⊆ sg:
• π is weak, if ∃s ∈ Σπ(s0) : g 6⊂ s;
• π is strong, if ∀s ∈ Σπ(s0) : g ⊆ s.
A strong policy π is acyclic if the execution of π never

visits the same state twice; and cyclic otherwise, however
guaranteed to eventually reach the goal in every fair execu-
tion of π [3].

IV. CLASSICAL PLANNING PROBLEMS

Classical planning domains are simplified models of non-
deterministic planning domains where the state-transition
function γ returns only one possible state per action:
|γ(s, a)| = 1, ∀s ∈ S, ∀a ∈ A. Simplifying the notation
and definitions given above for FOND problems: a planning
operator o = (h, P,E) is classical if |E| = 1, i.e., E is the
single effect of o. Thus, the result of applying an action a in a
state s is a new single state given by γ(s, a) = (s−E−)∪E+.

Intuitively, a domain D = (L,O) is classical if O is a
set of classical operators, and a problem P = (D, s0, g) is
classical if D is a classical domain.

Solutions to classical planning problems are convention-
ally sequential plans rather than policies. Let P = (D, s0, g)
be a classical planning problem. A plan p is any sequence
of actions 〈a1, . . . , ak〉 for k ≥ 0, such that there exists a
sequence of states 〈s0, . . . , sk〉 where each si = γ(si−1, ai)
for 1 ≤ i ≤ k. The plan p is a solution to P if g ⊆ sk.

Definition 1 (Acyclic Policy Image). Let P = (D, s0, g)
be a classical planning problem and p = 〈a1, . . . , ak〉 an
acyclic plan for P . The plan p can be translated into an

Algorithm 1: Compilation from FOND to Classical
Input: D = (L,O) . a non-deterministic domain
Output: ∆ . an ordered set of classical domains

1 ∆← {}
2 En = E1 × · · · ×En = {(e1, . . . , en)|ei ∈ Ei, 1 ≤ i ≤ n}
3 for (e1, . . . , en) ∈ sorted(En) do
4 O ← {} . a set of classical operators
5 for oi ∈ O do . i ∈ {1, . . . , n}
6 O ← O ∪ (oi.h, oi.P, ei)
7 ∆← ∆ ∪ (L,O)
8 return ∆ ∪ (L,

⋃
o∈O

⋃
e∈o.E(o.h, o.P, e))

equivalent policy π = {(s0, a1), . . . , (sk−1, ak)}, called the
acyclic policy image of p for P , such that both p and π
produce exactly the same sequence of state transitions at s0,
and each si = γ(si−1, ai) for 1 ≤ i ≤ k. �

V. COMPILATION FROM FOND TO CLASSICAL

Let o = (h, P, {e1, . . . , em}) be a non-deterministic
operator. The classical compilation of o is a set of classical
operators {o1, . . . , om} such that each oi = (h, P, ei) for
1 ≤ i ≤ m. We employ a single-outcome compilation to
translate from non-deterministic to classical, and generate a
set of all possible classical domains from the combination
of the non-deterministic planning operators’ outcomes.

Algorithm 1 shows our method of compiling a non-
deterministic domain into a set of classical domains. It takes
as input a non-deterministic domain D = (L,O) including n
non-deterministic operators, and compiles it into an ordered
set of classical planning domains, ∆. We first build a set of
all possible combinations of the non-deterministic planning
operators’ outcomes (line 2). We employ the n-ary Cartesian
product over the n sets of the non-deterministic effects
of the planning operators in O. Then, for every ordered
tuple of effects, (e1, . . . , en), we create and add a new
classical domain to ∆ by replacing the effects of every non-
deterministic planning operator with every ei (lines 3-7).

In [13], it is shown that the performance of classical
planners is affected by domain model configuration. In
Algorithm 1, the obtained classical domains are also ranked
according to the quality of non-deterministic operators, e.g.,
operators with a larger number of (or fewer) effects are given
the highest priority. We note there are problems where this
heuristic might not be helpful in avoiding misleading plans,
however, in practice, it works well on most of the benchmark
problems. In this work, we do not investigate the impact of
other possible heuristics for reordering planning operators. A
detailed study of different heuristics has been conducted in
[13], [14], which can be used and integrated in our planner.

It is worth noting that in practice the single-outcome com-
pilation was sufficient to solve existing FOND benchmarks,
however, there are situations where the single-outcome com-
pilation can lead to incompleteness. For example, let us
consider a planning task with two variables x and y, both of
which are initially false. The goal is to make two variables,
x and y, true. Furthermore, there is only one action a with
two possible effects: either x is made true or y is made true.

Algorithm 2: Safe-Planner (SP)
Input: (P = (D, s0, g), X) . X is a set of classical planners
Output: π . a strong cyclic solution

1 ∆← Compilation(D) . see Alg. 1
2 π ← {}, θ ← {} . a set of deadend states
3 while ∃s ∈ Σπ(s0) s.t. g 6⊂ s do
4 π′ ← Make-Safe-Plan(X,D,∆, s, g, θ) . see Alg. 4
5 if π′ 6= failure then
6 π ← π∪{(s′, a) | (s′, a′) ∈ π′, a in D corresp. a′}
7 else
8 if s = s0 then return failure . no plan exists at s0
9 θ ← θ ∪ {s} . s is a deadend state

10 for (s′, a′) ∈ π s.t. s ∈ γD(s′, a′) do
11 π ← π \ {(s′, a′)} . remove (s′, a′) from π

12 return π

There is a strong cyclic solution, namely the application of
the action a in the initial state, that leads into two states in
which either x or y is true. The single-outcome yields two
planning domains, a domain with a single action 〈true, x〉 and
a domain with a single action 〈true, y〉. Since there is only
one relevant action in each domain, both domains lead into
unsolvable tasks. So, in order not to lose the completeness,
we also append all-outcome determinization at the end of the
list of compiled domains (line 8).

VI. PLANNING FOR STRONG CYCLIC SOLUTIONS

We present a non-deterministic planner, Safe-Planner (SP),
for computing strong cyclic policies to FOND problems. SP
is a variant implementation of NDP2 [9] that relies on a
single-outcome determinization. We first describe the main
algorithm of SP (Algorithm 2) which compiles a planning
domain from non-deterministic to classical and aggregates
solutions to classical problems and forms a strong policy.
Then, we elaborate on the internal functions of SP to avoid
deadends and compute acyclic plans (Algorithms 3 and 4).

In Algorithm 2, SP takes as input a FOND problem P
including a non-deterministic domain D, an initial state s0,
and a goal g, and a set of external classical planners X , and
as output computes a strong (possibly cyclic) policy π for P .

On line 1, SP compiles D into a set of classical domains ∆
(see Algorithm 1). On line 2, π is the current evolved strong
policy, and θ retains a set of deadend (unsolvable) states.

On each planning iteration (lines 3-11), on line 3, SP finds
a non-goal terminal state s by the execution of the current
policy π on the initial state: Σπ(s0). Note that when π is
empty (e.g., in the first iteration) s is the initial state.

On line 4, Make-Safe-Plan (explained later in Algorithm 4)
is a function that given the tuple (X,D,∆, s, g, θ) computes
an acyclic policy image π′ at s (if any) which never produces
states in θ nor visits the same state twice.

If there is such a policy image π′ at s (line 5), then it is
merged into π with forcing to replace the old states in π with
new ones in π′ (line 6), that is, if there is a common state s′

in π and π′, old actions in π(s′) are replaced by new actions
in π′(s′). This is the key to avoiding inescapable loops in π
whereby neither a goal nor a non-goal terminal state could be
found on the next iterations of SP. Note that when merging

Algorithm 3: Constrain a Domain and a Problem
Input: (D, s,A) . A is a set of actions leading to deadends at s
Output: (D′, s′) . (a constrained domain, a constrained state)

1 D′ ← D, s′ ← s, (L′, O′)← D′

2 foreach action n(c1, . . . , ck) ∈ A do
3 s′ ← s′ ∪ {disallowedn(c1, . . . , ck)}
4 L′ ← L′ ∪ {disallowedn(x1, . . . , xk)}
5 foreach operator (n(x1, . . . , xk), P, E) ∈ O′ do
6 foreach action n(c1, . . . , ck) ∈ A do
7 P ← P ∪ {¬disallowedn(x1, . . . , xk)}
8 foreach action m(c1, . . . , cl) ∈ A do
9 E ← E ∪ {¬disallowedm(c1, . . . , cl)}

10 return (D′, s′)

π′ into π, the deterministic actions in π′ are replaced with
their corresponding non-deterministic actions in D (line 6).

If no such policy image exists at s (line 7), and s is
the initial state (line 8), SP returns a failure; otherwise SP
concludes that s is a deadend state and adds it to θ (line 9).
SP also removes from π all states and actions in π that
produce s (lines 10-11).

SP repeats this procedure until a strong cyclic solution is
computed (lines 12) and there are no more non-goal terminal
states in Σπ(s0) (line 3); or all deadend states are detected
and removed from π and no more plan exists at s0 that avoids
deadends, where planning ends in failure (line 8).

A. Constraining a Domain and a Problem

The core of SP is to avoid deadends (and cycles) when
computing an acyclic policy image at a non-goal terminal
state (shown later in Algorithm 4). SP uses classical planners
as a black box and does not modify the internal algorithms
of the planners. Therefore SP must deal with deadends
externally. An approach to avoiding deadends is to look for
alternative plans that do not start with already known actions
leading to deadends. A method for modifying a classical
planning domain and a planning problem is proposed in [9]
such that actions leading to deadends become inapplicable at
the first step of any solution to the problem. Based on that
work, we present the Constrain function in Algorithm 3. It
receives as input a classical domain D, a state s and a set
of uninteresting actions A that lead to deadends (or cycles)
when applied in s, and returns a constrained domain D′ and
a constrained state s′ that ensure a classical planner cannot
produce a plan starting with an action in A (if any).

On line 1, D and s are preserved unmodified by making a
copy of them into D′ and s′. For every action n(c1, . . . , ck)
in A, a ground predicate disallowedn(c1, . . . , ck) is intro-
duced into s′ (lines 2 and 3), and an ungrounded predicate
disallowedn(x1, . . . , xk) is introduced into L′ (line 4).

For every planning operator (n(x1, . . . , xk), P, E) ∈ O′

(line 5) that has instances in A (line 6), a negated un-
grounded predicate ¬disallowedn(x1, . . . , xk) is introduced
into the operator’s precondition P (line 7), and for all actions
m(c1, . . . , cl) ∈ A (line 8), a negated ground predicate
¬disallowedm(c1, . . . , cl) is introduced into the operator’s
effect E (line 9).

Algorithm 4: Make-Safe-Plan (MSP)
Input: (X,D,∆, s0, g, θ)
Output: π . an acyclic policy image

1 π ← 〈〉; B ← {}; U ← θ; s← s0
2 loop
3 for D ∈ ∆ do
4 D′, s′ ← Constrain(D, s, {a|(s, a) ∈ B}) . Alg. 3

5 if ∃〈a′1, . . . , a′k〉 from Planner(X,D′, s′, g) then
6 for i = 1, . . . , k do
7 ai ← the action in D corresp. a′i
8 ai ← the action in D corresp. ai
9 if γD(s, ai) ∈ Sπ ∨ γD(s, ai) ∩ U 6= ∅ then

10 B ← B ∪ {(s, ai)}
11 break
12 π ← π · (s, ai)
13 s← γD(s, ai)
14 else . inner for-loop finished with no break
15 return π
16 break . inner for-loop was broken, so break the outer too
17 else . outer for-loop finished with no solution found for all domains
18 if π = 〈〉 then return failure
19 U ← U ∪ {s}
20 (s, a)← π.pop()
21 B ← B ∪ {(s, a)}

This ensures a grounding of an operator n(x1, . . . , xk)
for constants (c1, . . . , ck) never occurs in s′ containing the
predicate disallowedn(c1, . . . , ck), as well as all predicates
disallowedm(c1, . . . , cl) are immediately removed from s′

when the first action in D′ is applied in s′.

B. Computing an Acyclic Policy Image

In Algorithm 4, Make-Safe-Plan (MSP) is a function that
given a tuple of a set of classical planners X , a non-deter-
ministic domain D, a set of classical domains ∆, an initial
state s0, a goal g, and a set of deadend states θ, and using the
above Constrain function, computes an acyclic policy image
π at s0 (if any) that never produces states in θ nor has cycles.

On line 1, π is the current acyclic policy image, B is a
set of state-action pairs leading to cycles or deadends which
no plan can begin with, U is a set of deadend states which
cannot take part in any solution, and s is the current state.

Within an infinite loop (line 2), MSP iterates over the
compiled classical domains in ∆ (lines 3-21). On each
iteration, on line 4, MSP constrains D and s into D′ and
s′ such that no plan can be found that begins with actions
associated with s in B (see Algorithm 3). On line 5, Planner
is a multiprocessing function that calls simultaneously all
external planners in X to find a plan given the constrained
domain D′ and the constrained state s′. As soon as a plan
〈a′1, . . . , a′k〉 is found by a classical planner, Planner termi-
nates other classical planners and returns the plan (line 5),
and then MSP proceeds to merge the whole or part of the
plan into π that avoids producing deadend states in U or
causing cycles in π (lines 6-13):

Lines 6-11: for each action a′i, for 1 ≤ i ≤ k (line 6), ai is
the deterministic action in D that corresponds to a′i (line 7)
and ai is the non-deterministic action in D that corresponds
to ai (line 8). On line 9, if the new state produced by s and ai:
γD(s, ai), is in Sπ (causing a cycle), or the states produced

by s and ai: γD(s, ai), are in U (leading to deadends); then
MSP stops merging the plan into π, adds the current state
and action (s, ai) in B (line 10), and breaks both for-loops
(lines 11 and 16) and starts over the planning from s on
line 3.

Lines 12-13: if ai does not cause a cycle and ai does not
lead into deadends, MSP appends (s, ai) to π (line 12), and
replaces s with the new state (line 13), and continues testing
and merging other actions into π (lines 6-13).

On line 15, if all actions of the current plan are merged into
π, that is, no action leads into deadends nor causes cycles,
MSP terminates and returns the acyclic policy image π.

On line 17, if no plan exists at s for all classical domains
in ∆, MSP backtracks from s to a previous state and attempts
to make a new plan while avoiding s: MSP adds s to U as
an unsolvable state (line 19), and retrieves the previous state
and action leading to s and adds them to B (lines 20-21).
On line 18, if π is empty and there is no previous state, then
this means there is no plan at s0 that can avoid cycles nor
states in U , so MSP returns failure.

Note: lines 14 and 17 conform to the for-else Python syn-
tax, meaning the associated for-loops finished without break.

C. Soundness and Completeness

Lemma 1. If planners in X are sound and guaranteed to
terminate, then MSP is sound and returns either an acyclic
policy image that never leads to deadends or a failure.

Proof. MSP returns an acyclic policy image (Alg. 4, line 15)
if it passes the test for all actions of the current plan against
deadends and cycles, and since the planners in X are sound,
the last action achieves the goal. Now, it is enough to
show that the current plan never causes cycles nor leads
to deadends. By induction, if the policy is empty, then the
lemma is trivially true. We assume 〈a1, . . . , ai−1〉 is part of
the plan, already processed and merged into π, that avoids
states in U and does not cause any cycle (lines 6-13). Further
assume MSP is adding a new action ai to π. On line 9, MSP
already checks that ai does not lead into deadends nor cause
a cycle, and if not, ai is added in, so 〈a1, . . . , ai〉 is safe.

Lemma 2. If planners in X are sound, then after every
iteration of SP there are no inescapable cycles in π.

Proof. Proof by induction. By Lemma 1, the returned policy
image by MSP, to merge in π, is acyclic, so when π is empty,
the lemma is trivially true. For the induction step, (i) MSP
returns an acyclic policy image, π′, so SP merges and
replaces old states in π with new ones in π′ until the end of
π′, which by Lemma 1 is a goal state. So, any modified states
in π must have a path to a goal; (ii) MSP returns a failure on
a state s, so all states and actions leading to s are removed
from π, and since s was the last non-goal terminal state, any
state leading to s now becomes a non-goal terminal state.

Theorem 1. If planners in X are sound, then SP is sound.

Proof. By Lemma 2, after every iteration of SP, there are
no inescapable cycles in π. That is, all terminal states in

π are reachable from s0. If SP returns π, which means SP
terminates without a failure, then there are no more non-goal
terminal states in π, so all states in π have a path to a goal
state, and thus π is a valid strong policy.

Theorem 2. If planners in X are sound and complete, then
SP is complete.

Proof. Proof by contradiction. Let us assume SP is not
complete and there are a problem P and a strong policy
π for P , such that SP returns a failure to P . This means
MSP cannot find a plan at s0 that avoids states in θ, so π
has paths from s0 to the goal which involve some states in
θ. This is a contradiction with Lemma 1 that MSP never
returns a plan including deadend states in θ.

VII. IMPLEMENTATION AND EMPIRICAL EVALUATION

Safe-Planner has been implemented in Python and inte-
grates several off-the-shelf classical planners. 1 We present
the performance of SP in existing FOND benchmarks and
validate its utility in real and simulated robotic tasks.

A. Standard FOND Benchmarks

We show the performance of SP, using Fast-Downward
(FD) [15] as its internal planner, in FOND benchmarks from
the past uncertainty tracks of the 5th (IPC2006) and the
6th (IPC2008) international planning competitions [12], [16],
and existing FOND domains from literature [4], [7]. We
performed all experiments on a machine 1.9GHz Intel Core
i7 with 16GB memory with the limited planning runtime to
30 minutes. We compare our results to PRP 2 and FOND-
SAT 3 with their option for computing strong cyclic policies.
Unfortunately, NDP2 is not publicly available, however, by
disabling the option for the single-outcome determinization
in SP, we can achieve the basic algorithm of NDP2. So, we
also report the performance of SP as NDP2 using the same
planner FD. Furthermore, we report the results obtained by
other classical planners integrated into SP, e.g., Fast-Forward
(FF) [10] and Madagascar (M) [17], and in multiprocessing.

As mentioned earlier in Algorithm 1, SP ranks the com-
piled single-outcome domains according to the number of
effects of operators. We ran SP with the best ordering heuris-
tic, selected on a domain-by-domain basis by alternating
between descending (the default ordering heuristic in SP)
and ascending orders. In Table I, we report these heuristics
as ↓ for descending and ↑ for ascending orders.

Table I shows the problem solving coverage for SP, NDP2,
PRP and FOND-SAT in the used FOND domains. The best
coverage is shown in bold. The domains are shown in two
fragments. For the domains in the upper part, which are
mostly from the past IPCs and do not involve many mislead-
ing plans, PRP showed an excellent coverage, SP and NDP2
showed fairly similar performance, and FOND-SAT showed
a poor performance. The last 4 FOND domains, introduced
in [7] where FOND-SAT shows fairly good results, involve

1The code is at: https://github.com/mokhtarivahid/safe-planner
2https://github.com/qumulab/planner-for-relevant-policies
3https://github.com/tomsons22/FOND-SAT

Domain (#problems) SPFD NDP2FD PRP FOND-SAT
acrobatics (8) 8 (0) ↓ 6 (0) 8 (0) 0 (0)
beam-walk (11) 8 (0) ↓ 8 (0) 11 (0) 0 (0)
blocksworld (30) 20 (0) ↓ 20 (0) 30 (0) 0 (0)
doors (15) 10 (0) ↑ 10 (0) 12 (3) 11 (0)
elevators (15) 15 (0) ↓ 15 (0) 15 (0) 5 (0)
ex-blocksworld (15) 6 (6) ↓ 6 (6) 6 (9) 5 (0)
faults (49) 49 (0) ↑ 49 (0) 55 (0) 0 (0)
first-responders (100) 58 (25) ↓ 58 (25) 75 (25) 0 (0)
tireworld (15) 12 (3) ↓ 12 (3) 12 (3) 12 (0)
triangle-tire (40) 3 (0) ↓ 3 (0) 40 (0) 2 (0)
zenotravel (15) 15 (0) ↓ 15 (0) 15 (0) 5 (0)
islands (60) 60 (0) ↑ 9 (0) 31 (0) 60 (0)
miner (50) 50 (0) ↑ 16 (0) 14 (0) 44 (0)
tireworld-spiky (11) 11 (0) ↓ 11 (0) 1 (0) 9 (0)
tireworld-truck (74) 73 (0) ↓ 23 (0) 21 (0) 67 (0)
total (514) 398 (34) 289 (34) 346 (60) 220 (0)

TABLE I: Total number of problems for which SP, NDP2, PRP and FOND-
SAT compute strong cyclic solutions. The numbers in brackets are those
problems for which it is proven that no strong solutions exist within the
30 minutes. The arrows ↓ and ↑ indicate respectively the descending and
ascending orderings used for ranking the compiled single-outcome domains
in SP. Best coverages are shown in bold.

many misleading plans. Due to the used single-outcome
compilation, SP could avoid producing misleading plans,
hence showing better results. PRP and NDP2, on the other
hand, showed a poor performance in these domains because
of using only all-outcome determinization.

For an illustration of the relative performance of different
planners, the cactus diagram in Figure 2 shows the number
of problem instances that planners solved as the timeout
limit is increased. Here, we also ran SP with other integrated
classical planners, e.g., FF and FF+M (multiprocessing). In
most of the domains, SP could achieve the best perfor-
mance using either FD or FF, however, in some domains,
e.g., faults and first-responders, SP showed better results
in multiprocessing mode. We note that the performance of
SP is degraded slightly using multiple planners due to the
multiprocessing overhead, e.g., in beam-walk, SP showed
slightly poor performance in multiprocessing.

B. Real World Tasks

We also evaluated and integrated SP into real world non-
deterministic tasks.

1) Real Robot Object Manipulation: We set up a packag-
ing task including an automated workspace with a dualarm
YuMi manipulator and a table containing a set of objects
that need to be put upward into a box. The orientation of
objects on the table are not known to the robot. A non-
deterministic perception action, check orientation, identifies
the orientation of each object as either upward or downward.
Given a problem, SP computes a strong policy that gives the
robot a choice of rotating an object or not at runtime. Snap-
shots of a YuMi manipulator putting two objects into a box
were shown in Figure 1. In this experiment, we used OPTIC
[18], a temporal planner integrated into SP, to generate a
partially ordered strong policy to this task. We implemented
and executed robot’s skills using eTaSL [19]. See a video of
this demonstration at: https://youtu.be/MciY5Gb3c7o.

2) Simulated Environments: We integrated SP into a Task
and Motion Planning (TAMP) framework [20] and demon-
strated this framework in two simulated non-deterministic

0 100 200 300 400
number of solved problems

0
100

101

102

103

tim
e

(s
)

NDP2_{FD}
PRP
SAT
SP_{FD}
SP_{FF}
SP_{FF+M}

Fig. 2: Total number of solved problems as the time is increased.

(a) (b)

Fig. 3: The task is to lift the farthest object. The object might be heavy, thus
the manipulator has to pull it to improve the chance of a successful lift, how-
ever, the obstructing object has to be taken away first. (a) the initial state; (b)
the final configuration of the system after executing the final strong policy.

tasks. We developed a planner-independent interface which
translates between the high-level symbolic task descriptions
and the low-level geometrical space. In this work, task plan-
ning is achieved using SP and motion planning is achieved
by solving an Optimal Control Problem (OCP) [21]. More
details of this work are given in [20]. A video of these tasks
is also available at: https://youtu.be/j0Ol8lKhuKk.

a) Singlearm Tabletop Object Manipulation: The first
task involves lifting an object where the weight of the object
is not known to the robot (see Figure 3). When the object
is heavy the lift operation will fail due to torque limits, so
the robot must first pull the object to a configuration that
improves the robot’s chance of a successful lift. We also
consider some object that might obstruct the path of the
pulling object. Therefore, to achieve the task, manipulators
must first remove obstructing objects and then pull and lift
the target object. In this experiment, the TAMP framework
tests the feasibility of 11 actions, identifies 2 unfeasible
actions, and makes 2 replannings in about 25 seconds.
Figure 4 also shows the final strong cyclic solution, computed
by SP, to achieve this task.

b) Dualarm Tabletop Object Manipulation: The second
task involves picking up an object where its grasp poses
might be obstructed by neighboring objects (see Figure 5).
The domain allows for picking up an object with both
single and dualarm actions, however, a strong solution to
pick up a large object must involve two arms rather than
a single arm since the object might fall down and slip
from the table, resulting in a deadend state. Moreover, the
obstruction constraints are not known in advance by the
robot. In this experiment, the TAMP framework computed a
feasible policy to achieve the task after testing the feasibility
of 24 actions, identifying 9 unfeasible actions (constraints),

(grasp right_arm object2)

(pickup right_arm object2)

(grasp left_arm object1) (pull right_arm object2)

(pickup left_arm object1)

(pull left_arm object1)

+ (grasped right_arm object2)
- (free right_arm) (ungrasped object2)

+ (lifted object2)
- (ontable object2)

+ (heavy object2)

+ (grasped left_arm object1)
- (free left_arm) (ungrasped object1)

+ (nearby object2)
- (heavy object2)

+ (lifted object1)
- (ontable object1)

+ (heavy object1)
+ (nearby object1)
- (heavy object1)

Fig. 4: A strong cyclic policy to lift an object, computed by SP. Despite
involving loops, it is presumed that the plan eventually reaches a goal state
under a fairness assumption, that is, execution cannot loop forever and
outcomes leading to the goal must happen eventually.

(a) (b)

(c) (d)

Fig. 5: Snapshots of performing a dualarm tabletop object task. (a) the initial
state; (b) and (c) removing obstructing objects from the table to unblock
the left grasp pose of the target object, after 9 replanning and feasibility
testing; (d) the task is achieved.

and making 9 replannings in under 25 seconds.

VIII. CONCLUSION

We presented SP, a powerful replanner that relies on a
single-outcome determinization. Using an ordering heuristic
on single-outcome domains, SP produce weak plans that
could directly lead onto full strong policies. SP adopts the
basic ideas of NDP2 for FOND planning without any state
abstraction technique. We think the integration of the single-
outcome determinization with more advanced techniques
such as the state relevance in PRP can result in considerable
improvements in FOND planning.

The future work includes adopting different methods for
configuring and reordering single-outcome domains, e.g.,
one similar to [22]. Other improvement includes extending
SP to solve Partially Observable Non-Deterministic (POND)
problems and problems with multiple initial states.

ACKNOWLEDGMENT
This work is supported by the Flanders Make SBO MUL-

TIROB project at KU Leuven, Belgium.

REFERENCES

[1] M. Ghallab, D. Nau, and P. Traverso, Automated planning: theory &
practice. Elsevier, 2004.

[2] M. Daniele, P. Traverso, and M. Y. Vardi, “Strong cyclic planning
revisited,” in European Conference on Planning, 1999, pp. 35–48.

[3] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso, “Weak, strong,
and strong cyclic planning via symbolic model checking,” Artificial
Intelligence, vol. 147, no. 1-2, pp. 35–84, 2003.

[4] C. J. Muise, S. A. McIlraith, and C. Beck, “Improved non-
deterministic planning by exploiting state relevance,” in the 22nd
International Conference on Automated Planning and Scheduling, ser.
ICAPS’12. AAAI Press, 2012, pp. 172–180.

[5] J. Fu, V. Ng, F. Bastani, and I.-L. Yen, “Simple and fast strong cyclic
planning for fully-observable nondeterministic planning problems,” in
the 22nd International Joint Conference on Artificial Intelligence, ser.
IJCAI’11. AAAI Press, 2011, pp. 1949–1954.

[6] U. Kuter, D. Nau, E. Reisner, and R. P. Goldman, “Using classi-
cal planners to solve nondeterministic planning problems,” in the
Eighteenth International Conference on International Conference on
Automated Planning and Scheduling, ser. ICAPS’08. AAAI Press,
2008, pp. 190–197.

[7] T. Geffner and H. Geffner, “Compact policies for fully observable non-
deterministic planning as SAT,” in the 28th International Conference
on Automated Planning and Scheduling, ser. ICAPS’18. AAAI Press,
2018, pp. 88–96.

[8] S. W. Yoon, A. Fern, and R. Givan, “FF-Replan: A baseline for
probabilistic planning,” in the Seventeenth International Conference
on International Conference on Automated Planning and Scheduling,
ser. ICAPS’07, vol. 7, 2007, pp. 352–359.

[9] R. Alford, U. Kuter, D. Nau, and R. P. Goldman, “Plan aggregation
for strong cyclic planning in nondeterministic domains,” Artificial
Intelligence, vol. 216, pp. 206–232, 2014.

[10] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan
generation through heuristic search,” Journal of Artificial Intelligence
Research, vol. 14, pp. 253–302, 2001.

[11] F. Teichteil-Koenigsbuch, G. Infantes, and U. Kuter, “RFF: A robust,
FF-based MDP planning algorithm for generating policies with low
probability of failure,” Sixth International Planning Competition at
ICAPS, vol. 8, 2008.

[12] B. Bonet and R. Givan, “5th international planning competition: Non-
deterministic track–call for participation,” 2005, the 16th International
Conference on Automated Planning and Scheduling (ICAPS’06).

[13] M. Vallati, F. Hutter, L. Chrpa, and T. L. McCluskey, “On the effective
configuration of planning domain models,” in International Joint
Conference on Artificial Intelligence (IJCAI). AAAI press, 2015.

[14] M. Vallati, L. Chrpa, and T. L. McCluskey, “Improving a planner’s
performance through online heuristic configuration of domain models,”
in The 10th Annual Symposium on Combinatorial Search, 2017.

[15] M. Helmert, “The Fast Downward planning system,” Journal of
Artificial Intelligence Research (JAIR), vol. 26, pp. 191–246, 2006.

[16] D. Bryce and O. Buffet, “6th international planning competition: Un-
certainty part,” the 6th International Planning Competition (IPC’08),
2008.

[17] J. Rintanen, “Planning as satisfiability: heuristics,” Artificial Intelli-
gence, vol. 193, pp. 45 – 86, 2012.

[18] J. Benton, A. Coles, and A. Coles, “Temporal planning with prefer-
ences and time-dependent continuous costs,” in the 22nd International
Conference on Automated Planning and Scheduling, ser. ICAPS’12.
AAAI Press, 2012, pp. 1–10.

[19] E. Aertbeliën and J. De Schutter, “etasl/etc: A constraint-based task
specification language and robot controller using expression graphs,”
in 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2014, pp. 1540–1546.

[20] A. Sathya, V. Mokhtari, W. Decre, and J. De Schutter, “Task and
motion planning in fully observable non-deterministic domains,” in
5th Workshop on Learning (in) Task and Motion Planning at Robotics:
Science and Systems (RSS 2020). RSS, 2020.

[21] A. S. Sathya, J. Gillis, G. Pipeleers, and J. Swevers, “Real-time robot
arm motion planning and control with nonlinear model predictive
control using augmented lagrangian on a first-order solver,” in 2020
European Control Conference (ECC). IEEE, 2020, pp. 507–512.

[22] M. Vallati and I. Serina, “A general approach for configuring PDDL
problem models,” in the 28th International Conference on Automated
Planning and Scheduling, ser. ICAPS’18. AAAI Press, 2018, pp.
431–435.

