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Abstract— We present Tasho (Task specification for receding
horizon control), an open-source Python toolbox that facilitates
systematic programming of optimal control problem (OCP)-
based robot motion skills. Separation-of-concerns is followed
while designing the components of a motion skill, which
promotes their modularity and reusability. This allows us to
program complex motion tasks by configuring and composing
simpler tasks. We provide templates for several basic tasks like
point-to-point and end-effector path-following tasks to speed
up prototyping. Internally, the task’s symbolic expressions are
computed using CasADi and the resulting OCP is transcribed
using Rockit. A wide and growing range of mature open-source
optimization solvers are supported for solving the OCP. Monitor
functions can be easily specified and are automatically deployed
with the motion skill, so that the generated motion skills can
be easily embedded in a larger control architecture involving
higher-level discrete controllers. The motion skills thus pro-
grammed can be directly deployed on robot platforms using
the C-code generation capabilities of CasADi. The toolbox has
been validated through several experiments both in simulation
and on physical robot systems. The open-source toolbox can be
accessed at: https://gitlab.kuleuven.be/meco-software/tasho

I. INTRODUCTION

Optimization-based motion generation frameworks have
been highly successful in robotics since many tasks can be
effectively programmed through constraints [1], because the
control trajectory or inputs for a given robot that achieves
the specified task can be automatically computed by solv-
ing a constrained optimization problem. This methodology
provides a high degree of generalizability to different robot
platforms and task parameters. However, programming these
tasks is an iterative and time-consuming process that in-
volves modeling, tuning parameters and adding/removing
constraints. Furthermore, the workflow from task definition
to solution deployment often involves prototyping in a high-
level programming language for simulations, to later program
in a low-level language for deployment on a real robot.

To address the aforementioned issues, we present Tasho
– a Python toolbox for Task specification for receding
horizon control – which (i) provides several features and
design patterns to facilitate the iterative design process in
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constraint-based task specification for robots and (ii) fos-
ters the synergy between relevant open-source modules for
robotics and optimization, aiming at defining an efficient and
direct workflow for fast deployment of constraint-based tasks
on robot hardware.

A. Related Work

At one end, constraint-based task control can be achieved
with an instantaneous and reactive approach, as in eTaSL
[2] and Stack of Tasks [3], where a quadratic program (QP),
is solved to obtain instantaneous control inputs. However,
this approach does not simulate the system over a prediction
horizon and provides limited guarantees related to optimality
and constraint satisfaction. At the other end, tasks can be
solved as a trajectory optimization problem and executed in
open loop in a nonreactive manner. Receding horizon control,
also known as model predictive control (MPC), combines the
best of both approaches, where the trajectory optimization
problem is solved repeatedly in a loop in real-time to obtain
both reactivity and favourable properties related to optimality
and constraint satisfaction [4].

Multiple software frameworks have been developed re-
cently for robot trajectory optimization such as the ADRL
Control Toolbox [5], ALTRO [6] and Crocoddyl [7]. They
focus on providing fast optimization solvers using algorithms
based on Riccati recursion like iterated linear quadratic
regulator (iLQR) and differential dynamic programming
(DDP), which are necessary for achieving high MPC loop
frequencies. Drake [8] is a C++ toolbox providing access to
a large number of mature solvers and dynamics simulators
for optimization-based control systems design.

In these software frameworks, however, one needs to
formulate a new mathematical program from scratch each
time a new task is defined. There is limited support for
composing tasks to obtain a new task. Except for Drake, they
also do not facilitate developing reusable constraint models.
For instance, it is desirable to mathematically model the
complex constraint that encodes that an object of a particular
shape is inside a box and reuse it across different tasks
that require such constraints for particular objects and boxes.
Even if the other frameworks provide Python bindings, there
is no support for a unified and simplified workflow from
prototyping in Python to deployment with limited or no
additional coding in a low level language like C++.

B. Approach and contributions

Tasho is a Python toolbox that aims to ease the workflow
from task definition to controller deployment in robot appli-



cations through various design choices. It leverages existing
open source libraries to provide users with easy access to
relevant functionalities. Tasho is released under the GNU
LGPLv3 license and relies on the powerful optimization
and algorithmic differentiation (AD) framework CasADi [9]
for expression handling, algorithmic differentiation, serial-
ization, code-generation and interfacing optimization solvers
and algorithms. Rockit [10], an open-source package built on
top of CasADi by the MECO Research Team, is used within
Tasho to transcribe, solve and post-process OCPs arising
in MPC implementations. Please not that the use of Tasho
does not represent an additional overhead with respect to
the direct use of CasADi or Rockit during MPC executions.
Moreover, Tasho interfaces the rigid-body dynamics library
(RBDL) Pinocchio [11] to generate efficient functions of
rigid-body dynamics and kinematics (and their derivatives).
In addition to this, support is provided for physics simulation
and visualization through PyBullet [12].

It aims to make task specification intuitive, modular and
reusable by encouraging users to model constraints sepa-
rately and define a task from bottom-up as pre-, per- and
post-conditions of these constraints, similar to how predi-
cates and actions are defined in the PDDL domains [13].
Flexibility is provided to modify and compose existing tasks
both in parallel and sequence to quickly define new and
more complex tasks. It aims to eliminate additional and
often time-consuming coding in low level languages like
C++ for experimental deployment, through code-generation
and motion skill modeling which can be parsed by robot
control middleware like Orocos [14] and ROS [15] to auto-
matically generate a controller component. Tasho’s scope is
completely restricted to continuous motion skills. However,
it provides support for specifying monitor functions which
evaluate boolean functions of continuous expressions and
communicate events. This feature is essential for a high-
level discrete controller/planner to coordinate change in the
behaviour at the continuous level. This choice of separation
between computation and coordination respects suggested
best practices in robotics [16].

The main contributions of this work are (i) a user-friendly
open-source toolbox that provides a unified workflow that
streamlines and automates many steps from specification
to experimental deployment to enable rapid prototyping of
OCP/MPC based motion skills, (ii) the proposal of a design
methodology for continuous task specification that enhances
modularity and reusability, and (iii) the definition of a
functionality to easily program complex tasks by modifying
existing task templates, by composing simpler tasks or by
reusing specific submodules of other tasks.

II. STRUCTURE OF TASHO

This section presents the overall structure and modules
of Tasho and their dependencies as shown in Fig. 1 and
described below.

1) Robot model: Efficient subroutines to compute robot
kinematics, forward and inverse dynamics, and analytical
derivatives of such dynamics and kinematics directly from

WORLD (Robots, Obstacles, Environment)

Robot descriptions Deployment

Simulation

(PyBullet)

Robot

model

Task 

templates

Task 

specification

Transcription

options

Deployment

options

Optimization problem

formulation

Solver 

options

Continuous motion

skill

Optimization

solvers

Fig. 1: Overall structure of Tasho showing the interaction of
its internal components.

robot description (URDF) files are provided through an
interface with the state-of-the-art RBDL Pinocchio.

2) Task specification: The task specification module
forms the core of the toolbox and allows for reusable
constraint-based tasks models to be specified by the user.
This module is described in more detail in Section III.

3) Transcription options: Through the Rockit package,
this module provides access to direct methods [17] for con-
verting the infinite-dimensional OCP associated with the task
to a finite-dimensional approximation that can then be solved
as a nonlinear program (NLP). The user can choose amongst
multiple-shooting, single-shooting, direct collocation or B-
splines.

4) Task templates: This module provides templates for
various tasks and constraints. They serve as example for task
specifications and can also be reused for specifying more
complex tasks. The use of templates is explained further in
Section III-E.

5) Optimization problem formulation: This module per-
forms the actual transcription from a constraint-based task
specification into an NLP using the aforementioned transcrip-
tion options.

6) Deployment options: This module sets the options rele-
vant for deployment of the controller by defining messaging
ports, properties and monitor functions. It is explained in
detail in Section IV.

7) Solver options: This module exposes to the user the
interface to several numerical optimization solvers and allows
the user to provide relevant solver options, e.g., maximum
number of iterations, convergence tolerance, and step-size.
Through CasADi, several mature optimization solvers are
made available, including IPOPT [18], SNOPT [19], KNI-
TRO [20], and CasADi’s implementation of the SQP method,
to name a few. Support for ACADOS [21], a popular OCP
solution framework for embedded applications is provided
through Rockit.

8) Continuous motion skill: The continuous motion skill
module generates a controller component that is ready to
be deployed either in a simulated environment (through a
simple interface to the PyBullet library) or in a real robot
(through an interface provided with Orocos). It handles the
deployment of both the OCP-based robot controller and the



monitor functions. This module is presented in more detail
in Section V.

III. TASK SPECIFICATION MODULE

The core module of Tasho, i.e., the task specification
module, is detailed in this section. The first subsection
presents all elements within a task component. We then give
details on the task composition capabilities of Tasho, on the
flexibility to remove or substitute entities within a task, and
on the task templates that are provided.

A. Elements of a Task Specification Component

A task component contains all the information relevant to
a continuous task whose schematic diagram is shown in Fig.
2. It consists of variables, expressions, constraint expressions
and constraint instances, and provides several functions to
manipulate these objects.

Task component
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Dynamics
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instances

Fig. 2: Structure of a task specification component.

In Tasho, a task specification component is an instantiation
of the Task class which composes the task specification mod-
ule and requires two arguments: (i) a name, the name given
to the task by the user, and (ii) a mid (model id) specifying
a type for the task. These string arguments are required
for all entities in a task component and their concatenation
should be a unique identifier for every entity within a task.
We explain different elements of a task component through
code-snippets taken from a point-to-point (P2P) motion task
specification, where a specific link on a robot needs to reach
a goal pose specified in Cartesian-space. This task is first
created as follows:

task = Task(name = rob.name, mid = ’P2P’)

1) Variables: Variables are the atomic entities of a task.
All the expressions of a task are functions of these variables.
The variables themselves can be of five types: states, con-
trols, parameters, free variables and magic numbers.

States are variables with dynamics and evolve over time
based on a continuous-time or discrete-time dynamics func-
tion which must be provided for every state variable as either
another variable or an expression, e.g., the generalized joint
positions and velocities of a robot.

Controls are variables that also evolve over the time
horizon of the task, but this evolution is not constrained by
a higher-order derivative unlike the state variable, e.g., the
actuated joint torques of a robot.

Parameters are placeholder expressions whose numerical
values must be provided by the user everytime they solve the
optimization problem associated with the task. They can be
used to supply state information from perception modules,
e.g., current joint pose of the robot or the pose of an object

that needs to be picked up. Parameters can be either fixed or
also varying over the horizon.

Free variables are other decision variables of the optimiza-
tion problem that do not vary over time. For instance, the
base position of a manipulator can be left as a free variable
for the pick-and-place tasks to also compute an associated
optimal base position.

Magic numbers are variables initialized to important con-
stants like controller gains or tolerances. Explicitly declar-
ing magic numbers instead of hard-coding constants allows
programmers to access, inspect and modify them in an exist-
ing task component for reconfiguration. Unlike parameters,
magic numbers cannot be modified after code-generation.

We present a code-snippet that shows the declaration of
three variables q, qd, and qdd within the P2P task. Along
with name and mid, the declaration takes as arguments (i)
the type and (ii) a shape which sets the two-dimensional
size of the variable.
q = task.create_variable(rob.name,

’q’, type = ’state’, shape = (rob.nd,1))
qd = task.create_variable(rob.name,

’qd’, type = ’state’, shape = (rob.nd,1))
qdd = task.create_variable(rob.name,

’qdd’, type = ’control’, shape = (rob.nd,1))

In this example, the variables q := q ∈ Rndof and qd

:= q̇ ∈ Rndof are states representing the generalized joint
angles and velocities, respectively, qdd := q̈ ∈ Rndof is
defined as a control input and represents the generalized joint
accelerations, and ndof is the number of dof of the robot
(ndof = 7). The double integrator dynamics involving q, q̇
and q̈ can be defined within the task as
task.set_der(q, qd)
task.set_der(qd, qdd)

where q̇ is set as time-derivative of q, and q̈ is set as time-
derivative of q̇.

2) Expressions: Expressions are the result of applying
mathematical functions on variables and/or other expres-
sions. Since CasADi is used internally to represent these
expressions, we support the same wide range of mathematical
functions available in CasADi for their definition. In the
following example, two expressions are defined: pose, which
represents the pose of the end-effector computed by the
forward kinematics function fk(q) : Rndof → SE(3), and
trans_error, which is the substraction between the position
of the end-effector pee(q) (the first three components of
the last column of pose) and a goal position pgoal (the
first three components of the last column of a variable
goal_pose_franka_panda ∈ SE(3) of type magic number).
pose = Expression(
rob.name, mid = ’pose_7’,
expr_fun = lambda q: fk(q), q)

trans_error = Expression(
rob.name, mid = ’trans_error_pose_7_vs_goal’,
expr_fun = lambda e, r: -e[0:3,3] + r[0:3,3],
pose_7, goal_pose_franka_panda)

Besides the required arguments name and mid, an expression
requires an argument expr_fun, which is a Python lambda
function defining the actual expression, and a set of parent
variables (or expressions).



3) Constraint expressions: Constraint expressions encode
the mathematical program constraints on expressions and
variables and implicitly defines their feasible set. The con-
straints can be equality, inequality or double-sided inequality
constraints. We allow two levels of priority (or hardness)
– ‘hard’ and ‘soft’. For soft constraints, slack variables to
permit constraint violation are automatically created and the
user must specify a penalty function (ℓ1, ℓ∞ and ℓ22 norms
are currently supported) and a multiplicative penalty weight.
Specifying more than two levels of strict priority between
constraints of an OCP is still a research topic [22] and is
not currently supported in Tasho. We also make the design
decision choice that any components of the objective function
of a task must be specified as soft constraints.

The following code snippet is used to build a constraint
expression based on expression trans_error.

trans_con = ConstraintExpression(
rob.name, mid = ’trans_con_pose_7_vs_goal’,
expression = trans_error,
constraint_hardness = ’hard’,
reference = [0, 0, 0])

Here, a hard constraint is specified on trans_error in
order to impose the constraint pee(q) − pgoal = 0, without
specifying the time instant at which the constraint must be
met.

4) Constraint Instances: Constraint instances are the im-
position of a constraint expression as either initial, path or
terminal constraints. As the name suggests, initial constraints
must be satisfied at the initial time instant of the predictive
horizon, path constraints throughout the horizon and terminal
constraints at the final time instant of the horizon.

Continuing with the example, the constraint expression
trans_con is instantiated at the final time instant of the
predictive horizon by using the following code.

task.add_terminal_constraints(trans_con)

B. Composing Tasks

The Task class provides a compose() function that com-
bines two subtasks task1 and task2 to create a new task
task_new = compose(task1, task2). The constraint-based
task specification approach substantially simplifies this com-
position step because the intersection of the feasible set
associated with a set of constraints is implicitly the feasible
set of the concatenation of all constraints in the set.

Task composition performs a union operation of all the
internal components of the individual subtasks. This requires
detecting duplicate (if any present) variables, expressions,
constraint expressions and constraint instantiates. Otherwise,
the task can have multiple variable or expressions rep-
resenting same physical quantities that may be assigned
different values by the optimization solver which is not
physically feasible. Having duplicate constraints will affect
the efficiency of the optimization problem.

To detect duplicates, we check the unique identifier (de-
fined by name and mid) of each entity in the task component.
For instance, if there is a Variable identified as q in both

task1 and task2, both variables are considered to be dupli-
cates. Only the q from task1 is included in task_new and all
the children expressions of q in task2 are assigned to the new
variable q in task_new. A similar approach is followed for
expressions, constraint expressions and constraint instances.
Therefore, we require users to assign unique name and mid

to entities to prevent name-clashes.

C. Sequential composition

Tasho supports sequential composition of tasks and con-
verts it into a multi-stage OCP using Rockit, where the
constraints, dynamics and even variables can be different
in different stages. Continuity constraints are automatically
imposed on state variables that are common between the
tasks that are sequentially composed. This is useful in many
cases, e.g., in a bin picking task where the first phase involves
reaching the object and a second phase involves a Cartesian
motion such that the object is between the grippers, or for
legged robots where certain constraints are valid only during
some gait phases.

D. Removing or substituting entities

Since Tasho aims to promote reusability of tasks and their
components, it provides options to modify an existing task to
suit a new task. Users can add or remove any entity (variable,
expression, constraint expression or constraint instance) to
a task. When removing an entity, all its children are also
deleted from the task. Conversely, during an entity substitu-
tion, the new entity also substitutes the old entity as parent
of its children within the task.

E. Task Templates

Various task templates are provided that act as a base and
also as examples for constrained-based task specification in
Tasho. They can be used as-is or be reused to build other
tasks, e.g., composing other tasks or being extended with
additional entities.

The P2P task template specification partly shown through
the code snippets in this section has additional constraints,
e.g., orientation constraints, box limits on q, qd and qdd. This
template takes a robot object and a link as arguments and
returns a P2P task object. The source code of the specifi-
cation is available in Tasho’s repository1. An autogenerated
task component graph of a P2P task for the seventh link of
a Franka Panda robot is shown in Fig. 3.

The tasks thus specified are transcribed into an NLP after
the transcription options are specified. The solver object of
this NLP is then either code-generated or serialized using
CasADi depending on the solver options.

IV. DEPLOYMENT OPTIONS

The solver object from the previous section can be called
in any existing control framework or middleware like ROS
written in C/C++ for deployment. But since our aim with

1The source code of the P2P template can be accessed at https:
//cutt.ly/Tasho_P2P_Template. Other templates are available at
https://cutt.ly/Tasho_Templates

https://cutt.ly/Tasho_P2P_Template
https://cutt.ly/Tasho_P2P_Template
https://cutt.ly/Tasho_Templates
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Tasho is to program tasks in Python at a level of detail high
enough to minimize or eliminate additional coding in a low-
level language like C++, we support additional features to
make this possible. For this, the user must specify additional
deployment options which are explained below.

A. Properties and ports

The controller needs to communicate with other programs,
e.g., for configuration, to receive feedback from estimators or
to apply control actions. To model this, we specify two types
of communication channels similar to Orocos properties and
ports which are explained further below.

1) Properties: Properties are meant for communicating
information to the controller that does not change during the
motion execution and is primarily for configuration purposes,
e.g., joint acceleration limits, soft-constraint weights, and
goal pose for P2P motions.

2) Ports: Input and output ports are meant for high-
frequency communication. These can be used to commu-
nicate at the frequency of the controller or even at higher
frequencies for monitor functions.
One must declare an input port or a property for every
Variable of type parameter in the task model. One can
declare an output port for any Variable or Expression in
the task model. For Variable entities of type free variable,
state or control, an input port can be declared, which will
provide the initial guess for these variables. Such initial guess
may be critical for the solver convergence.

B. Monitor functions

Monitor functions register the changes in the truth-value of
a boolean expression based on Variables and Expressions.
They register events during task execution, e.g., collisions,
constraint violation, solver infeasibility, completion of task,
which may be relevant for changing the robot behaviour. In
Tasho, we also introduce the option of specifying predictive
monitors, which monitor not only the current value of an

expression, but also its predicted value along the horizon.
This implementation of monitor functions represents a bridge
that can enable a rich interaction between a continuous-
level controller and a discrete high-level controller since
such high-level controller can (i) listen to these monitors
to coordinate different tasks and (ii) react in anticipation to
events that are predicted to occur in the future. Monitors
can be of four types: Current (they monitor the state of
the system at the current time instant), Anytime (they turn
true if the monitored expression is true at any step in the
horizon), Throughout (they are true only if the expression
is true at all steps of the horizon) and Final (they monitor
the expressions at the final instant of the horizon). This is
only possible for predictive MPC controllers as opposed to
instantaneous controllers. All the options supplied here are
saved in a json file to be parsed by the continuous motion
skill component described in the next section.

V. CONTINUOUS MOTION SKILL

This section presents the continuous motion skill module
of Tasho. This module is in charge of taking the generated
solver object and the deployment options to automatically
create an executable robot controller ready to be deployed
either in simulation or on a real robot. It aims to automate
several recurring aspects of the deployment of robot skills
that are time consuming when written manually for each
new task.

A. Simulation

Being able to simulate and visualize the robot controller
in action is extremely useful for prototyping a controller. For
this, we provide an interface to the PyBullet library.

B. Deployment on a Real Robot

This component further simplifies the experimental de-
ployment of an OCP/MPC controller for complex robot mo-
tion skills. At the time of writing, it implements an interface



with Orocos in C++. We plan to build a similar interface for
ROS as well in the future. We present below the deployment
component for an MPC controller. A similar component is
also implemented for the simpler OCP controller, where the
computed trajectory is followed without reactivity.

The deployment of the continuous motion skill module is
implemented as a life cycle state machine with five states:
initialization, configuration, update, stop and cleanup. The
steps involved in each of these states are discussed below.
We refer the program that calls the motion skill hereafter as
client.

1) Initialization: The motion skill component in Orocos
enters this state upon creation. In this state, it performs the
following actions in order: loads the specified json options
file, loads the OCP solver object, allocates working memory,
create ports and properties for future communication. After
these steps, the skill is ready to be configured by the client
(possibly a discrete controller).

The client must assign values to properties and connect the
ports of the skill to ports of other programs. For instance,
the joint velocity output port of the motion skill should be
connected to the joint velocity input port of the Orocos robot
driver (assuming that the robot is joint velocity controlled).
The client can trigger the transition to the configuration state
after connecting the ports.

2) Configuration: In the configuration state, the skill (i)
reads all properties and messages from the input ports, (ii)
sets appropriate numerical values and initial guesses from
messages to the corresponding OCP parameters and decision
variables, respectively, and (iii) solves the OCP. For an
MPC solution, it also loads the MPC solver if a different
OCP solver is provided for solving MPC problems. This
is desirable if one wants to use a slow but robust solver
for solving the OCP to convergence and then a fast and
warm-started solver for fast MPC execution, e.g., solving one
SQP iteration per MPC iteration as in the real time iteration
scheme [23]. The skill is now ready to be deployed.

3) Update: This state deploys the MPC controller and
runs in a loop at the rate of the MPC frequency. It receives
all input messages and assigns them to the right parameters
and variables. It predicts the future state of the system by
simulating the system by one MPC timestep for the applied
control input to account for MPC computation delay. During
the first iteration of the loop, the solution from the OCP
solved in the configuration state is used. The task parameters
are initialized to these states and the MPC problem is solved.
The monitor functions are computed. The control actions and
monitor function updates are written to the output ports. The
MPC solution is shifted by one timestep for all task states
and control variables to prepare for warm-starting during the
next iteration.

4) Stop: The client can trigger the transition of the skill
to the stop state from the update state depending on the event
messages sent by the skill – e.g., termination criteria reached
or solver infeasibility. In this state no more messages are
written to the ports. The client can trigger a transition to
either the configuration state for executing another motion

task with different parameters or to the cleanup state.
5) Cleanup: In the cleanup state, the allocated memory

is freed and the solver objects are deleted.

VI. EXPERIMENTS

In this section we demonstrate the deployment of Tasho
for two robotic applications: bin-picking and dual-arm laser
contouring. In these applications we employ task templates
to leverage their reusability.

A. Time optimal bin-picking application

A time optimal bin-picking application, where a robot
transferred elements from one bin to another, was deployed.
Each pick motion was programmed as a sequential composi-
tion of three P2P motion stages, each of which was quickly
programmed by modifying a base P2P template. The first
P2P stage substituted the 6D goal pose constraint with a
terminal constraint requiring the gripper to be above the bin.
The stationarity constraints were removed at the intersection
of the stages in the P2P tasks allow smooth transitions. The
second stage required the robot to reach a pre-grasp pose
and the final P2P stage enforced a normal approach motion to
maximize successful grasp chances with the suction cup. The
last two stages avoided collision with the bin walls while the
first stage’s collision avoidance constrained simply modelled
the bin as a solid box, with the remaining collision avoidance
constraints being common for all the stages.

This application was deployed on a UR10 robot shown
in Fig. 4. Free time option, multiple shooting discretization,
prediction horizon of 10 OCP steps for the P2P stage and
5 OCP steps for the approach motion were provided as
transcription options, while time optimality was selected as
a control option within the task specification to optimize bin
picks per hour. Using IPOPT and MA57 [24], fast motion
trajectories were computed successfully in ∼100 ms and had
an average execution time of ∼500 ms. This allowed to reach
a bin-pick cycle time of ∼5 s, where the bottleneck was the
perception module that returned the pose of the objects to
pick.

Fig. 4: Setup of the bin-picking task using a 7-dof UR10
robot manipulator with a suction cup.

B. Dual arm laser contouring

A complex dual arm laser contouring task was deployed
on a dual arm ABB Yumi robot. Specifying this task is



significantly more complex than specfifying a bin-picking
task. The left gripper of the robot points a laser at a
workpiece held by the right gripper. The task requires the
laser to trace a curve on the workpiece. Along with the usual
constraints on system limits, the task requires the angle of
incidence of the laser and the distance of the pointer from
the workpiece to be within specified bounds. Furthermore,
the user can specify a desired velocity of the contouring
as well. The motion skill computed the jointspace velocity
commands to achieve this desired task which was sent to
the robot via the provided Orocos interface. For an MPC
frequency of 20 Hz and a horizon of 13 sampling steps,
equivalent to 650 ms, we obtained MPC computation times
of ∼15 ms on average using IPOPT and MA57, and ∼30 ms
in the worst case, which is well within the ∼50 ms MPC
sampling time.

Fig. 5: Setup for the dual-arm laser contouring experiment
performed by using an ABB Yumi robot.

VII. DISCUSSION

As already mentioned in Section I, there exist multiple
software frameworks or packages aimed for robot control
and optimization. Some of them, such as CT, ALTRO and
Crocoddyl provide implementations of fast OCP solution
algorithms. Tasho, however, has a different focus aiming at
the facilitating programming of constraint-based tasks and
providing a fast solver is out of its scope. Nevertheless, we
do aim to interface it with FATROP [25] in the near future,
which is a fast solver for optimal control being developed
in our group. Drake is another framework that has a similar
focus on modeling as Tasho, but it is more mature with a
significantly larger development team and scope (supports
sum-of-squares programming, mixed integer programming
and simulating deformable objects, to name a few features)
compared to all the other packages mentioned. We will only
consider the relevant features of Drake that overlap with
Tasho’s scope in the discussion below.

A comparison between Tasho and the aforementioned
software packages is shown in Table I.

From the compared packages, only Crocoddyl and Tasho
provide an interface with the RBDL Pinocchio which, unlike
RobCoGen [26], RobotDynamics.jl [27] and Drake’s RBDL
implementation, implements efficient formulations of ana-
lytical derivatives of rigid-body dynamics. These analytical
derivatives are thus used by Tasho and Crocoddyl within
OCP solution algorithms and have been proven to reduce
the solution times of OCPs in robotic applications [28].

Tasho relies on the general AD tool CasADi. Besides
support for high order derivatives (not supported by Eigen’s
AutoDiffScalar [29]) and code-generation (not supported
by AutoDiffScalar and ForwardDiff.jl [30]), CasADi offers
great flexibility in terms of expression handling (with atomic
variables optimized for memory footprint or performance),
Jacobian overloading, serialization of expressions, and inter-
faces with efficient OCP solvers, unlike CppAD [31].

Features to add complex custom constraints, i.e., reusable
constraint definitions, directly to the mathematical program
and defining monitor functions appear to be present only
in Drake and Tasho. Also sequential composition of tasks
to generate multi-stage OCPs is not supported by ALTRO
or CT. Specifying multi-stage OCPs is possible in Drake
and Croccodyl, but with a higher programming effort than
in Tasho. In Drake, one needs to manually specify the
different dynamics and objective functions at different phases
at NLP level. In Croccodyl, it is not clear how easy it is
to program multi-stage tasks different from the examples
involving different phases in walking.

Moreover, software abstractions like task composition are
not provided in the other software frameworks. Most im-
portantly, Tasho provides a simplified workflow completely
in Python, from task specification to solution deployment,
which makes programming robot tasks easier than in these
other frameworks in our opinion.

Modifying task specifications by adding or removing con-
straints in Tasho can only be done either offline or online, but
not during real-time execution of a controller. This is because
generating a new CasADi solver object can take hundreds of
milliseconds. Such real-time modification is not performed
by other MPC packages either to the best of our knowledge.

VIII. CONCLUSIONS AND FUTURE WORK

We presented Tasho, an easy to use open-source Python
toolbox for robot task specification and control using MPC.
We proposed and developed a modular framework for declar-
ative task specification in the context of optimal control,
that is flexible enough to formulate a large class of robot
OCP/MPC problems. This modularity enables reuse of large
parts of code. Interfaces are provided to a wide range or
relevant libraries in robotics and optimization. The stream-
lined workflow allow faster and easier prototyping of robot
tasks compared to existing tools. The option for adding
complex monitors for predictive control during task specifi-
cation opens up opportunities for rich interaction between the
continuous-level controllers and the discrete-level controller.
As future work, we will add other important functionalities to
Tasho, such as the deployment interface with ROS and ROS2,



TABLE I: Comparison of Tasho against other similar software packages.

Software
package Language RBDL AD tool Custom

constraints Monitors Multi-stage Task
composition

Implementation of
fast solvers*

CT C++ RobCoGen CppAD ✗ ✗ ✗ ✗ ✓
ALTRO Julia RobotDynamics.jl ForwardDiff.jl ✗ ✗ ✗ ✗ ✓

Crocoddyl C++** Pinocchio*** CppAD ✗ ✗ ✓ ✗ ✓
Drake C++** Own implementation AutoDiffScalar ✓ ✓ ✓ ✗ ✗
Tasho Python Pinocchio*** CasADi ✓ ✓ ✓ ✓ ✗

* Provides its own implementation of fast OCP solvers.
** Provides Python bindings.
*** Leverages Pinocchio’s efficient formulation of analytical derivatives of rigid-body dynamics.

a graphical user interface, the interface with the FATROP
solver, and the support for contact dynamics and floating-
base robots.
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E. Aertbeliën, K. Claes, and H. Bruyninckx, “Constraint-based task
specification and estimation for sensor-based robot systems in the
presence of geometric uncertainty,” The International Journal of
Robotics Research, vol. 26, no. 5, pp. 433–455, 2007.
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